约束空间内壳装炸药殉爆及防护

张所硕 聂建新 张剑 孙晓乐 郭学永 张韬

张所硕, 聂建新, 张剑, 孙晓乐, 郭学永, 张韬. 约束空间内壳装炸药殉爆及防护[J]. 爆炸与冲击, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456
引用本文: 张所硕, 聂建新, 张剑, 孙晓乐, 郭学永, 张韬. 约束空间内壳装炸药殉爆及防护[J]. 爆炸与冲击, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456
ZHANG Suoshuo, NIE Jianxin, ZHANG Jian, SUN Xiaole, GUO Xueyong, ZHANG Tao. Sympathetic detonation of explosive charge in confined space and its protection[J]. Explosion And Shock Waves, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456
Citation: ZHANG Suoshuo, NIE Jianxin, ZHANG Jian, SUN Xiaole, GUO Xueyong, ZHANG Tao. Sympathetic detonation of explosive charge in confined space and its protection[J]. Explosion And Shock Waves, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456

约束空间内壳装炸药殉爆及防护

doi: 10.11883/bzycj-2022-0456
基金项目: 国家自然科学基金(11772058)
详细信息
    作者简介:

    张所硕(1996-  ),男,硕士研究生,1032611910@qq.com

    通讯作者:

    聂建新(1977- ),男,博士,副研究员,niejx@bit.edu.cn

  • 中图分类号: O385

Sympathetic detonation of explosive charge in confined space and its protection

  • 摘要: 为研究壳装炸药在包装箱内的殉爆响应和防护方法,开展了壳装聚黑铝炸药在包装箱内的殉爆试验,通过被发装药残留炸药和壳体破碎情况,判断被发装药的反应情况。建立了壳装炸药箱内殉爆计算模型,采用非线性有限元计算方法,对壳装聚黑铝炸药殉爆试验进行了数值模拟。并对包装箱进行防殉爆设计及试验验证。数值模拟结果表明,在包装箱内装药发生殉爆的主要原因为高速破片的撞击。试验结果显示,在无防护条件下,主发装药箱内2发、下层箱内1发被发装药发生爆轰反应,下层箱内1发被发装药未发生反应;在相邻装药间设置20 mm木隔板,在箱底设置2 mm铝板后,仅有与主发装药相邻的被发装药发生爆燃至爆炸等级的反应,其余3发被发装药未发生反应。说明在箱内设置隔板可有效降低殉爆反应等级。
  • 图  1  装药壳体结构示意图

    Figure  1.  Schematic diagram of the charge structure

    图  2  壳装炸药实物图

    Figure  2.  Photos of explosive charge

    图  3  殉爆试验布置示意图

    Figure  3.  Setup of SD test

    图  4  试验现场布置图

    Figure  4.  Photos of test setup

    图  5  无防护措施殉爆试验后现场图

    Figure  5.  Photos of SD test without protective design

    图  6  各装药间距离示意图

    Figure  6.  Diagram of the distance between explosive charges

    图  7  殉爆试验数值计算模型

    Figure  7.  Numerical simulation model of SD test

    图  8  无防护措施时上层包装箱内殉爆过程

    Figure  8.  SD process in the upper packaging box without protective design

    图  9  无防护措施时下层包装箱内殉爆过程

    Figure  9.  SD process in the lower packaging box without protective design

    图  10  监测点位置分布

    Figure  10.  Location distribution of gauge points

    图  11  无防护措施时被发装药内部压力曲线

    Figure  11.  Pressure curves of acceptor charges without protective design

    图  12  无防护措施时装药壳体单元速度曲线

    Figure  12.  Velocity curves of acceptor charges’ shell elements without protective design

    图  13  无防护措施时被发装药内部压力随空间位置变化曲线

    Figure  13.  Curves of pressure inside the acceptor charges at spatial positions

    图  14  防殉爆设计后的包装箱结构示意图

    Figure  14.  Packaging box structure with anti-SD design

    图  15  防殉爆设计后的数值计算模型

    Figure  15.  Numerical simulation model with anti-SD design

    图  16  有防护措施时上层包装箱内的殉爆过程

    Figure  16.  SD process in the upper packaging box with protective design

    图  17  有防护措施时下层包装箱内的殉爆过程

    Figure  17.  Process of SD in the lower packaging box with protective design

    图  18  有防护措施时装药内部的压力曲线

    Figure  18.  Pressure curves of acceptor charges with protective design

    图  19  有防护措施时装药壳体单元的速度曲线

    Figure  19.  Velocity curves of acceptor charges’ shell elements with protective design

    图  20  有防护措施时被发装药内部压力随空间位置变化曲线

    Figure  20.  Curves of pressure inside the acceptor charges at spatial positions

    图  21  有防护措施时殉爆试验的箱内布置图

    Figure  21.  Setup of the box for the SD experiment with protective measures

    图  22  加隔板后的殉爆试验结果

    Figure  22.  Result of SD experiment after partitions included

    表  1  JHL-2炸药的JWL状态方程参数[15]

    Table  1.   Parameters of JWL equation of state for JHL-2[15]

    ρ0/(g∙cm−3)D/(ms−1)pCJ/GPaA/GPaB/GPaR1R2ωE/GPa
    1.85780026222527.595.851.730.498.5
    下载: 导出CSV

    表  2  JHL-2炸药反应速率方程参数

    Table  2.   Reaction rate equation parameters of JHL-2

    I/μs−1baxG1/(GPayμs−1)cdyG2/(GPazμs−1)egz
    2.5×1050.6670.0280.0950.2220.6672.00.0010.3331.03.0
    下载: 导出CSV

    表  3  3种常见材料的密度

    Table  3.   Density of three commonly used materials

    隔板材料ρ/(g∙cm−3)
    木材0.46
    2.73
    7.80
    下载: 导出CSV
  • [1] Hazard assessment test for non-nuclear munitions: MIL-STD-2105E [S]. USA: Department of Defense Test Method Standard, 2022.
    [2] Policy for introduction and assessment of insensitive munitions (IM): AOP-39 [S]. NATO Standardization Office (NSO), 2018.
    [3] Sympathetic reaction test procedures for munitions: AOP-4396 [S]. NATO Standardization Office (NSO), 2020.
    [4] 周冰, 李良春, 张会旭. 弹药防殉爆包装技术浅析 [J]. 包装工程, 2018, 39(1): 217–222. DOI: 10.19554/j.cnki.1001-3563.2018.01.043.

    ZHOU B, LI L C, ZHANG H X. Anti-sympathetic detonation packaging of ammunition [J]. Packaging Engineering, 2018, 39(1): 217–222. DOI: 10.19554/j.cnki.1001-3563.2018.01.043.
    [5] KUBOTA S, OGATA Y, WADA Y, et al. Observation of shock-induced partial reactions in high explosive [J]. Shock Compression of Condensed Matter, 2007, 955: 955–958. DOI: 10.1063/1.2833287.
    [6] 陈朗, 王晨, 鲁建英, 等. 炸药殉爆实验和数值模拟 [J]. 北京理工大学学报, 2009, 29(6): 497–500, 524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.

    CHEN L, WANG C, LU J Y, et al. Experiment & simulation of sympathetic detonation tests [J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 497–500, 524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.
    [7] 王晨, 伍俊英, 陈朗, 等. 壳装炸药殉爆实验和数值模拟 [J]. 爆炸与冲击, 2010, 30(2): 152–158. DOI: 10.11883/1001-1455(2010)02-0152-07.

    WANG C, WU J Y, CHEN L, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell [J]. Explosion and Shock Waves, 2010, 30(2): 152–158. DOI: 10.11883/1001-1455(2010)02-0152-07.
    [8] 吉倩, 孔德仁, 高尚, 等. 战斗部殉爆试验多参数存储测试系统 [J]. 测控技术, 2020, 39(3): 84–88. DOI: 10.19708/j.ckjs.2020.03.014.

    JI Q, KONG D R, GAO S, et al. Multi-parameter storage test system for warhead sympathetic detonation experiment [J]. Measurement & Control Technology, 2020, 39(3): 84–88. DOI: 10.19708/j.ckjs.2020.03.014.
    [9] 胡宏伟, 王健, 卞云龙, 等. 带壳装药水中殉爆特性分析 [J]. 水下无人系统学报, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.

    HU H W, WANG J, BIAN Y L, et al. Experiments of sympathetic detonation performance of explosives with shell in water [J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.
    [10] HOWE P M, HUANG Y K, ARBUEKLE A L. A numerical study of detonation propagation between munitions [C]// Proceedings of the 7th Symposium (International) on Detonation. Boston, USA, 1982: 1055–1061.
    [11] CHEN L, WANG C, FENG C G, et al. Study on random initiation phenomenon for sympathetic detonation of explosive [J]. Defence Technology, 2013, 9(4): 224–228. DOI: 10.1016/j.dt.2013.12.002.
    [12] KIM B, KIM M, SUN T, et al. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations [J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5491–5502. DOI: 10.1007/s12206-016-1117-2.
    [13] 张立建, 沈飞, 畅博, 等. 典型相似结构柱壳装药殉爆响应数值模拟 [J]. 科学技术与工程, 2021, 21(3): 1003–1010. DOI: 10.3969/j.issn.1671-1815.2021.03.024.

    ZHANG L J, SHEN F, CHANG B, et al. Numerical simulation of the sympathetic detonation response od cylindrical shell charge with typical similar structures [J]. Science Technology and Engineering, 2021, 21(3): 1003–1010. DOI: 10.3969/j.issn.1671-1815.2021.03.024.
    [14] 田斌, 李如江, 赵家骏, 等. 钢板与泡沫铝复合板弹药包装箱的对比研究 [J]. 兵器装备工程学报, 2019, 40(10): 190–194. DOI: 10.11809/bqzbgcxb2019.10.040.

    TIAN B, LI R J, ZHAO J J, et al. Comparative study of steel plate and foam aluminum composite plate ammunition packaging box [J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 190–194. DOI: 10.11809/bqzbgcxb2019.10.040.
    [15] 段晓瑜. 含铝炸药空气中爆炸冲击波特性研究 [D]. 北京: 北京理工大学, 2017: 64. DOI: 10.26948/d.cnki.gbjlu.2017.000047.
    [16] LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids. 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
    [17] LU J P, LOCHERT I J, KENNEDY D L, et al. Simulation of sympathetic reaction tests for PBXN-109 [C]// Proceedings of 13th International Symposium on Detonation. New York, USA, 2006: 1338–1349.
    [18] 方青, 卫玉章, 张克明, 等. 射弹倾斜撞击带盖板炸药引发爆轰的条件 [J]. 爆炸与冲击, 1997, 17(2): 153–158.

    FANG Q, WEI Y Z, ZHANG K M, et al. On the projectile oblique-impact initiation conditions for explosive covered with a plate [J]. Explosion and Shock Waves, 1997, 17(2): 153–158.
    [19] 梁斌, 冯高鹏, 魏雪婷. 多枚破片冲击引爆带盖板炸药数值模拟分析 [J]. 弹箭与制导学报, 2013, 33(6): 62–66,69. DOI: 10.15892/j.cnki.djzdxb.2013.06.029.

    LIANG B, FENG G P, WEI X T. Numerical simulation on shock initiation of composition explosive of cover board subjected to multi-fragment [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(6): 62–66,69. DOI: 10.15892/j.cnki.djzdxb.2013.06.029.
    [20] LUECK M, HEINE A, WICKERT M. Numerical analysis of the initiation of high explosives by interacting shock waves due to multiple fragment impact [C]// Proceedings of the 26th International Symposium on Ballistics. Miami, Florida, USA: National Defense Industrial Association, 2011: 73–81.
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  85
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2023-02-14
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回