钢筋混凝土烟囱爆破拆除的下坐及早期断裂预测

孙金山 谢先启 贾永胜 姚颖康 刘昌邦 韩传伟 王洪刚 黄小武

孙金山, 谢先启, 贾永胜, 姚颖康, 刘昌邦, 韩传伟, 王洪刚, 黄小武. 钢筋混凝土烟囱爆破拆除的下坐及早期断裂预测[J]. 爆炸与冲击, 2022, 42(8): 085202. doi: 10.11883/bzycj-2021-0316
引用本文: 孙金山, 谢先启, 贾永胜, 姚颖康, 刘昌邦, 韩传伟, 王洪刚, 黄小武. 钢筋混凝土烟囱爆破拆除的下坐及早期断裂预测[J]. 爆炸与冲击, 2022, 42(8): 085202. doi: 10.11883/bzycj-2021-0316
SUN Jinshan, XIE Xianqi, JIA Yongsheng, YAO Yingkang, LIU Changbang, HAN Chuanwei, WANG Honggang, HUANG Xiaowu. Prediction of sinking down and early break in the air of reinforced concrete chimney during blasting demolition[J]. Explosion And Shock Waves, 2022, 42(8): 085202. doi: 10.11883/bzycj-2021-0316
Citation: SUN Jinshan, XIE Xianqi, JIA Yongsheng, YAO Yingkang, LIU Changbang, HAN Chuanwei, WANG Honggang, HUANG Xiaowu. Prediction of sinking down and early break in the air of reinforced concrete chimney during blasting demolition[J]. Explosion And Shock Waves, 2022, 42(8): 085202. doi: 10.11883/bzycj-2021-0316

钢筋混凝土烟囱爆破拆除的下坐及早期断裂预测

doi: 10.11883/bzycj-2021-0316
基金项目: 湖北省自然科学基金(2020CFA043);湖北省重点研发计划(2020BCA084);江汉大学科技创新专项
详细信息
    作者简介:

    孙金山(1980- ),男,博士,教授,sun99001@126.com

  • 中图分类号: O389; TU746.5

Prediction of sinking down and early break in the air of reinforced concrete chimney during blasting demolition

  • 摘要: 为分析钢筋混凝土烟囱在爆破拆除时发生下坐与空中断裂现象的机制并对其进行预测,对一高180 m烟囱的下坐和空中断裂过程进行了观测和分析。基于混凝土的压缩全应力-应变曲线特征,分析了烟囱支撑区的破坏过程,构建了烟囱失稳下坐的判别模型。通过建立烟囱下坐冲击作用下爆破切口以上烟囱的动力响应模型,分析了下坐冲击附加动应变波在烟囱中的传播特征。研究结果表明,考虑混凝土全应力-应变曲线特征和支撑区横截面应力和应变分布特征时,倾覆力矩与抵抗力矩的比值f可作为失稳下坐的判别条件之一;烟囱发生下坐的必要条件是支撑区最小残余承载力小于烟囱的重量。烟囱在下坐结束阶段,获得一定初速度的烟囱冲击基础时将产生冲击荷载,并在烟囱中部引起大于底端应变的应变,即产生动应变高程放大效应,该效应是导致烟囱发生早期断裂的主要原因。烟囱越高,下坐冲击历时越短,动应变高程放大效应越显著,发生断裂的风险也越大。随着烟囱高度的增加,烟囱最危险截面的位置也越高:由烟囱中下部移至烟囱中上部。
  • 图  1  萧山热电厂180 m高烟囱

    Figure  1.  The 180-m-high chimneyof Xiaoshan thermal power plant

    图  2  成都热电厂210 m高烟囱

    Figure  2.  The 210-m-high chimneyof Chengdu thermal power plant

    图  3  爆破方案

    Figure  3.  Blasting plan of the chimney

    图  4  烟囱支撑区裂纹扩展过程

    Figure  4.  Crack propagation process in the support part

    图  5  烟囱下坐位移时程曲线

    Figure  5.  Displacement-time history curve of chimney sinking down

    图  6  烟囱下坐速度时程曲线

    Figure  6.  Velocity-time history curve of chimney sinking down

    图  7  烟囱下坐加速度时程曲线

    Figure  7.  Acceleration-time history curve of chimney sinking down

    图  8  烟囱空中折断过程

    Figure  8.  Breaking in the air of the chimney

    图  9  混凝土典型应力-应变曲线

    Figure  9.  Typical full strain-stress curve of concrete

    图  10  支撑区不同区域混凝土的应力与应变状态示意图

    Figure  10.  Schematic of the stress and strain status of the concrete in the support part

    图  11  不受应力集中效应影响的烟道口以上烟囱的微元体模型

    Figure  11.  Microelement model of the chimney above the flue without stress concentration effect

    图  12  切口圆心角$\omega $与支撑区受压占支撑区比例ζ的关系

    Figure  12.  Relationship between the blasting notch’s central angle and the compressive region ratio

    图  13  切口圆心角$\omega $与烟囱倾覆失稳系数f的关系

    Figure  13.  Relationship between the blasting notch’s central angle and the instability coefficient

    图  14  减速过程对轴向应变放大系数ξ的影响

    Figure  14.  Distribution of amplification factor of longitudinal strain in deceleration process

    表  1  烟囱主要结构尺寸

    Table  1.   Structure parameters of the chimney

    高程/m筒壁外半径/cm筒壁内半径/cm筒壁厚度/cm隔热层厚度/cm内衬厚度/cm
    08127575500
    7.25776721551023
    20.00712662501023
    30.00662617451023
    45.00617575421012
    60.00572533391012
    75.00527491361012
    90.00482449331012
    105.00460430301012
    120.00437410271012
    135.00415391241012
    150.00392370201012
    165.00392372201012
    180.00392372201012
    下载: 导出CSV

    表  2  不同高度烟囱的最大动应变放大系数

    Table  2.   Maximum amplification factor of peak dynamic strain of chimneys with different heights

    烟囱高度/m烟囱截面面积随高度变化函数ξ最大动应变所处高度/m
    1 90A = 7.46e−0.017x1.09330
    2120A = 10.34e−0.014x1.24150
    3150A = 20.70e−0.012x1.38380
    4*180A = 22.35e−0.011x1.522110
    5210A = 32.05e−0.011x1.728140
    注: 表中180 m烟囱为一般的等截面烟囱,与第2节案例烟囱形状存在一定差异。
    下载: 导出CSV
  • [1] 褚怀保, 徐鹏飞, 叶红宇, 等. 钢筋混凝土烟囱爆破拆除倒塌与受力过程研究 [J]. 振动与冲击, 2015, 34(22): 183–186,198. DOI: 10.13465/j.cnki.jvs.2015.22.032.

    CHU H B, XU P F, YE H Y, et al. Collapse process and load-bearing process of reinforced concrete chimney during blasting demolition [J]. Journal of Vibration and Shock, 2015, 34(22): 183–186,198. DOI: 10.13465/j.cnki.jvs.2015.22.032.
    [2] 郑炳旭, 魏晓林, 陈庆寿. 钢筋混凝土高烟囱爆破切口支撑部破坏观测研究 [J]. 岩石力学与工程学报, 2006, 25(S2): 3513–3517. DOI: 10.3321/j.issn:1000-6915.2006.z2.026.

    ZHENG B X, WEI X L, CHEN Q S. Study on damage surveying of cutting-support of high reinforced concrete chimney demolished by blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3513–3517. DOI: 10.3321/j.issn:1000-6915.2006.z2.026.
    [3] 郑炳旭, 魏晓林, 陈庆寿. 钢筋混凝土高烟囱切口支撑部失稳力学分析 [J]. 岩石力学与工程学报, 2007, 26(S1): 3348–3354. DOI: 10.3321/j.issn:1000-6915.2007.z1.114.

    ZHENG B X, WEI X L, CHEN Q S. Mechanical analysis of cutting-support destabilization of high reinforced concrete chimney [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3348–3354. DOI: 10.3321/j.issn:1000-6915.2007.z1.114.
    [4] 徐鹏飞, 刘殿书, 张英才. 烟囱高位组合切口定向爆破倒塌过程数值研究 [J]. 振动与冲击, 2017, 36(15): 265–270. DOI: 10.13465/j.cnki.jvs.2017.15.040.

    XU P F, LIU D S, ZHANG Y C. Numerical study on the directional blasting collapse process of chimney with high combined incision [J]. Journal of Vibration and Shock, 2017, 36(15): 265–270. DOI: 10.13465/j.cnki.jvs.2017.15.040.
    [5] 言志信, 叶振辉, 刘培林, 等. 钢筋混凝土高烟囱定向爆破拆除倒塌过程研究 [J]. 振动与冲击, 2011, 30(9): 197–201. DOI: 10.3969/j.issn.1000-3835.2011.09.041.

    YAN Z X, YE Z H, LIU P L, et al. Collapsing process of high reinforced concrete chimney in blasting demolition [J]. Journal of Vibration and Shock, 2011, 30(9): 197–201. DOI: 10.3969/j.issn.1000-3835.2011.09.041.
    [6] 杨建华, 马玉岩, 卢文波, 等. 高烟囱爆破拆除倾倒折断力学分析 [J]. 岩土力学, 2011, 32(2): 459–464. DOI: 10.3969/j.issn.1000-7598.2011.02.023.

    YANG J H, MA Y Y, LU W B, et al. Analysis of fracture mechanics for falling tall chimneys during demolition blasting [J]. Rock and Soil Mechanics, 2011, 32(2): 459–464. DOI: 10.3969/j.issn.1000-7598.2011.02.023.
    [7] 言志信, 叶振辉, 刘培林. 烟囱定向爆破拆除倒塌过程 [J]. 爆炸与冲击, 2010, 30(6): 607–613. DOI: 10.11883/1001-1455(2010)06-0607-07.

    YAN Z X, YE Z H, LIU P L. Collapsing process of chimney demolition by directional blasting [J]. Explosion and Shock Waves, 2010, 30(6): 607–613. DOI: 10.11883/1001-1455(2010)06-0607-07.
    [8] 唐海, 梁开水, 张成良. 烟囱爆破倾倒折断的力学浅析 [J]. 爆破, 2003, 20(1): 9–11. DOI: 10.3963/j.issn.1001-487X.2003.01.003.

    TANG H, LIANG K S, ZHANG C L. Mechanics analysis of fall-down process of chimney by blasting demolition [J]. Blasting, 2003, 20(1): 9–11. DOI: 10.3963/j.issn.1001-487X.2003.01.003.
    [9] 侯吉旋, 李志昂, 郭兴, 等. 质量非均匀分布的烟囱在倾倒过程中的力学分析 [J]. 大学物理, 2017, 36(6): 50–51,55. DOI: 10.16854/j.cnki.1000-0712.2017.06.013.

    HOU J X, LI Z A, GUO X, et al. Mechanical analysis of the non-uniform falling chimney [J]. College Physics, 2017, 36(6): 50–51,55. DOI: 10.16854/j.cnki.1000-0712.2017.06.013.
    [10] 王云剑. 烟囱纵向冲击断裂试验与分析 [J]. 力学与实践, 2000, 22(2): 41–43. DOI: 10.3969/j.issn.1000-0879.2000.02.012.

    WANG Y J. Longitudinal shock test and analysis on chimney models [J]. Mechanics in Engineering, 2000, 22(2): 41–43. DOI: 10.3969/j.issn.1000-0879.2000.02.012.
    [11] PALLARÉS F J, AGÜERO A, MARTÍN M. Seismic behaviour of industrial masonry chimneys [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2076–2090. DOI: 10.1016/j.ijsolstr.2005.06.014.
    [12] WOLF J P, SKRIKERUD P E. Collapse of chimney caused by earthquake or by aircraft impingement with subsequent impact on reactor building [J]. Nuclear Engineering and Design, 1979, 51(3): 453–472. DOI: 10.1016/0029-5493(79)90133-X.
    [13] WILSON J L. Earthquake response of tall reinforced concrete chimneys [J]. Engineering Structures, 2003, 25(1): 11–24. DOI: 10.1016/S0141-0296(02)00098-6.
    [14] HUANG W, GOULD P L. 3-D pushover analysis of a collapsed reinforced concrete chimney [J]. Finite Elements in Analysis and Design, 2007, 43(11/12): 879–887. DOI: 10.1016/j.finel.2007.05.005.
    [15] MINGHINI F, MILANI G, TRALLI A. Seismic risk assessment of a 50m high masonry chimney using advanced analysis techniques [J]. Engineering Structures, 2014, 69: 255–270. DOI: 10.1016/j.engstruct.2014.03.028.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  139
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 修回日期:  2022-04-25
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回