弹体贯穿混凝土数值模拟的改进材料模型

任会兰 荣誉 许香照

任会兰, 荣誉, 许香照. 弹体贯穿混凝土数值模拟的改进材料模型[J]. 爆炸与冲击, 2022, 42(11): 113301. doi: 10.11883/bzycj-2022-0131
引用本文: 任会兰, 荣誉, 许香照. 弹体贯穿混凝土数值模拟的改进材料模型[J]. 爆炸与冲击, 2022, 42(11): 113301. doi: 10.11883/bzycj-2022-0131
REN Huilan, RONG Yu, XU Xiangzhao. An improved material model for numerical simulation of projectile perforating concrete[J]. Explosion And Shock Waves, 2022, 42(11): 113301. doi: 10.11883/bzycj-2022-0131
Citation: REN Huilan, RONG Yu, XU Xiangzhao. An improved material model for numerical simulation of projectile perforating concrete[J]. Explosion And Shock Waves, 2022, 42(11): 113301. doi: 10.11883/bzycj-2022-0131

弹体贯穿混凝土数值模拟的改进材料模型

doi: 10.11883/bzycj-2022-0131
基金项目: 国家自然科学基金(12032006, 12072028);北京理工大学青年教师学术启动计划(XSQD-202102011)
详细信息
    作者简介:

    任会兰(1973- ),女,博士,教授,huilanren@bit.edu.cn

    通讯作者:

    许香照(1989- ),男,博士,副研究员,xzxu@bit.edu.cn

  • 中图分类号: O385

An improved material model for numerical simulation of projectile perforating concrete

  • 摘要: 研究混凝土结构在冲击载荷下的力学特性对武器以及防护结构的设计和评估具有重要意义,而合适的材料模型可以更准确地预测混凝土结构的力学行为和破坏模式。因此,本文中提出了一种改进的混凝土塑性损伤材料模型来描述其在冲击载荷下的力学响应。该改进模型考虑了压力-体积应变关系、应变率效应、洛德角效应和塑性损伤累积对混凝土材料力学特性的影响,并引入了一个与损伤相关的硬化/软化函数来描述压缩状态下的应变硬化和软化行为。随后,通过对3个独立的强度面进行线性插值得到了该改进模型的破坏强度面,并采用部分关联流动法则考虑了混凝土材料的体积膨胀特性。最后,开展了单个单元在不同加载条件下和弹体贯穿钢筋混凝土靶的数值模拟,验证了该改进模型的可行性、准确性以及预测性能提升。
  • 图  1  状态方程示意图

    Figure  1.  Schematic diagram of equation of state

    图  2  强度面示意图

    Figure  2.  Schematic diagram of strength surfaces

    图  3  单个单元模型

    Figure  3.  Single element model

    图  4  单轴压缩应力-应变曲线

    Figure  4.  Uniaxial compressive stress-strain curves

    图  5  单轴拉伸应力-应变曲线

    Figure  5.  Uniaxial tensile stress-strain curves

    图  6  三轴压缩应力-应变曲线

    Figure  6.  Triaxial compressive stress-strain curves

    图  7  钢筋和弹体示意图

    Figure  7.  Schematic diagram of reinforcement and projectile

    图  8  有限元模型

    Figure  8.  Finite element model

    图  9  前靶和背靶的破坏模式

    Figure  9.  Damage mode on the front and back surfaces

    图  10  HJC模型预测的横截面破坏模式

    Figure  10.  Damage mode on the cross section predicted by HJC model

    表  1  改进混凝土模型材料参数

    Table  1.   Material parameters of improved concrete model

    基本力学参数强度面应变率效应状态方程损伤累积
    参数数值参数数值参数数值参数数值参数数值
    ρ/(g·cm−3)2440fc/MPa48Wx1.6pcrush/MPa16A15.98
    ν0.2ft/MPa4Wy5.5µcrush0.001A21.0
    G/GPa14.86B11.59Fm10plock/MPa800Dm0.035
    N10.90S0.8µlock0.1εfrac0.01
    B20.96${\dot \varepsilon _0}$/s−11.0K1/GPa85
    N20.86K2/GPa−171
    B31.94K3/GPa208
    N30.83
    下载: 导出CSV

    表  2  Kong-Fang模型材料参数

    Table  2.   Material parameters of Kong-Fang model

    fc/MPaE/GPaG/GPaK/GPaνT/MPaa1a2/MPa−1ωαd1d2d3εfrac
    4832.813.6718.220.240.58760.025/fc0.510.041.50.10.01
    下载: 导出CSV

    表  3  弹体和钢筋材料参数

    Table  3.   Material parameters of projectile and reinforcement

    材料密度/(g·cm−3杨氏模量/GPa泊松比屈服强度/MPa失效参数
    弹体8.0 2000.3
    钢筋7.852100.32350.8
    下载: 导出CSV

    表  4  弹体剩余速度

    Table  4.   Residual velocities of projectile

    冲击速度/
    (m·s−1
    实验/
    (m·s−1
    数值模拟/(m·s−1误差/%
    HJC模型改进模型HJC模型改进模型
    1058947991.2961.04.71.5
    749615649.4634.65.63.2
    606449490.1475.29.25.8
    434214243.8235.113.99.9
    381136164.3157.120.815.5
    下载: 导出CSV
  • [1] 王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.

    WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
    [2] XU X Z, MA T B, NING J G. Failure analytical model of reinforced concrete slab under impact loading [J]. Construction and Building Materials, 2019, 223: 679–691. DOI: 10.1016/j.conbuildmat.2019.07.008.
    [3] ZHANG J, CHEN W S, HAO H, et al. Performance of concrete targets mixed with coarse aggregates against rigid projectile impact [J]. International Journal of Impact Engineering, 2020, 141: 103565. DOI: 10.1016/j.ijimpeng.2020.103565.
    [4] 马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.

    MA T B, WU J, NING J G. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete [J]. Explosion and Shock Waves, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.
    [5] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
    [6] CUI J, HAO H, SHI Y C. Discussion on the suitability of concrete constitutive models for high-rate response predictions of RC structures [J]. International Journal of Impact Engineering, 2017, 106: 202–216. DOI: 10.1016/j.ijimpeng.2017.04.003.
    [7] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Proceeding of 14th International Symposium on Ballistics. Quebec, Canada, 1993.
    [8] 王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟 [J]. 爆炸与冲击, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.

    WANG Z L, BI C C, LI H R. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm [J]. Explosion and Shock Waves, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.
    [9] DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583.
    [10] KUMAR V, KARTIK K V, IQBAL M A. Experimental and numerical investigation of reinforced concrete slabs under blast loading [J]. Engineering Structures, 2020, 206: 110125. DOI: 10.1016/j.engstruct.2019.110125.
    [11] WAN W Z, YANG J, XU G J, et al. Determination and evaluation of Holmquist-Johnson-Cook constitutive model parameters for ultra-high-performance concrete with steel fibers [J]. International Journal of Impact Engineering, 2021, 156: 103966. DOI: 10.1016/j.ijimpeng.2021.103966.
    [12] IQBAL M A, RAJPUT A, GUPTA N K. Performance of prestressed concrete targets against projectile impact [J]. International Journal of Impact Engineering, 2017, 110: 15–25. DOI: 10.1016/j.ijimpeng.2016.11.015.
    [13] 戴湘晖, 段建, 周刚, 等. 低速弹体贯穿钢筋混凝土多层靶的破坏特性 [J]. 兵工学报, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.

    DAI X H, DUAN J, ZHOU G, et al. Damage effect of low velocity projectile perforating into multi-layered reinforced concrete slabs [J]. Acta Armamentarii, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.
    [14] POLANCO-LORIA M, HOPPERSTAD O S, BØRVIK T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model [J]. International Journal of Impact Engineering, 2008, 35(5): 290–303. DOI: 10.1016/j.ijimpeng.2007.03.001.
    [15] LIU Y, MA A E, HUANG F L. Numerical simulations of oblique-angle penetration by deformable projectiles into concrete targets [J]. International Journal of Impact Engineering, 2009, 36(3): 438–446. DOI: 10.1016/j.ijimpeng.2008.03.006.
    [16] ISLAM M J, SWADDIWUDHIPONG S, LIU Z S. Penetration of concrete targets using a modified Holmquist-Johnson-Cook material model [J]. International Journal of Computational Methods, 2013, 09(04): 1250056. DOI: 10.1142/S0219876212500569.
    [17] KONG X, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
    [18] LIU K, WU C Q, LI X B, et al. A modified HJC model for improved dynamic response of brittle materials under blasting loads [J]. Computers and Geotechnics, 2020, 123: 103584. DOI: 10.1016/j.compgeo.2020.103584.
    [19] DU Y, WEI J, LIU K, et al. Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2020, 234: 117386. DOI: 10.1016/j.conbuildmat.2019.117386.
    [20] TAYLOR L M, CHEN E, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
    [21] LEPPÄNEN J. Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension [J]. International Journal of Impact Engineering, 2006, 32(11): 1828–1841. DOI: 10.1016/j.ijimpeng.2005.06.005.
    [22] TU Z G, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. DOI: 10.1016/j.ijimpeng.2010.04.004.
    [23] HAO H, ZHOU X Q. Concrete material model for high rate dynamic analysis[C]//7th International Conference on Shock and Impact Loans on Structures. Beijing, 2007.
    [24] HARTMANN T, PIETZSCH A, GEBBEKEN N. A hydrocode material model for concrete [J]. International Journal of Protective Structures, 2010, 1: 443–468. DOI: 10.1260/2041-4196.1.4.443.
    [25] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003.
    [26] GOMATHI K A, RAJAGOPAL A, REDDY K S S, et al. Plasticity based material model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2020, 142: 103581. DOI: 10.1016/j.ijimpeng.2020.103581.
    [27] YANG L, WANG G S, ZHAO G F, et al. A rate and pressure-dependent damage-plasticity constitutive model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104394. DOI: 10.1016/j.ijrmms.2020.104394.
    [28] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [29] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effect of Munitions with Structures, Strausberg. Berlin, Germany, 1999.
    [30] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [31] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
    [32] WANG G S, LU D C, DU X L, et al. A true 3D frictional hardening elastoplastic constitutive model of concrete based on a unified hardening/softening function [J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 250–273. DOI: 10.1016/j.jmps.2018.06.019.
    [33] WEERHEIJM J, VAN DOORMAAL J C A M. Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34(3): 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005.
    [34] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [35] WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
    [36] ATTARD M M, SETUNGE S. Stress-strain relationship of confined and unconfined concrete [J]. ACI Materials Journal, 1996, 93(5): 432–442.
    [37] SAMANI A K, ATTARD M M. A stress-strain model for uniaxial and confined concrete under compression [J]. Engineering Structures, 2012, 41: 335–349. DOI: 10.1016/j.engstruct.2012.03.027.
    [38] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  116
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-07-01
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回