• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 37 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Luo Binqiang, Zhang Hongping, Zhao Jianheng, Sun Chengwei. Lagrangian forward analysis in data processing of ramp wave compression experiments[J]. Explosion And Shock Waves, 2017, 37(2): 243-248. doi: 10.11883/1001-1455(2017)02-0243-06
Citation: Luo Binqiang, Zhang Hongping, Zhao Jianheng, Sun Chengwei. Lagrangian forward analysis in data processing of ramp wave compression experiments[J]. Explosion And Shock Waves, 2017, 37(2): 243-248. doi: 10.11883/1001-1455(2017)02-0243-06

Lagrangian forward analysis in data processing of ramp wave compression experiments

doi: 10.11883/1001-1455(2017)02-0243-06
  • Received Date: 2015-07-21
  • Rev Recd Date: 2015-11-05
  • Publish Date: 2017-03-25
  • In the present work, we developed a novel method combining the forward Lagrange method and the transfer function method to process the data of ramp wave compression experiments. Compared with traditional methods, this method is more suitable to process the data containing materials' complex behaviors and produces more accurate results. Meanwhile, this method has lower precision requirement regarding the initial gauss of testing material parameters. The feasibility and robustness of the transfer function method was analyzed, and the application of the forward Lagrange method and the transfer function method were examined in forward data processing of strength measurement experiments under ramp wave compression.
  • loading
  • [1]
    孙承纬, 赵剑衡, 王桂吉, 等.磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J].力学进展, 2012, 42(3):206-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200497977

    Sun Chengwei, Zhao Jianheng, Wang Guiji, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advances in Mechanics, 2012, 42(3):206-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200497977
    [2]
    李牧, 孙承纬, 赵剑衡.固体材料高功率激光斜波压缩研究进展[J].爆炸与冲击, 2015, 35(2):145-156. http://www.bzycj.cn/CN/abstract/abstract9440.shtml

    Li Mu, Sun Chengwei, Zhao Jianheng. Progress in high-power laser ramp compression of solid[J]. Explosion and Shock Waves, 2015, 35(2):145-156. http://www.bzycj.cn/CN/abstract/abstract9440.shtml
    [3]
    Wang G, Zhao J, Zhang H, et al. Advances in quasi-isentropic compression experiments at institute of fluid physics of CAEP[J]. The European Physical Journal Special Topics, 2012, 206(1):163-172. doi: 10.1140/epjst/e2012-01597-y
    [4]
    王桂吉, 赵剑衡, 孙承纬, 等.磁驱动准等熵加载装置CQ-4的加载能力及主要应用[J].实验力学, 2015, 30(2):252-263. http://d.old.wanfangdata.com.cn/Periodical/sylx201502016

    Wang Guiji, Zhao Jianheng, Sun Chengwei, et al. On the loading capability and main application of magnetically driven quasi-isentropic compression device CQ-4[J]. Journal of Experimental Mechanics, 2015, 30(2):252-263. http://d.old.wanfangdata.com.cn/Periodical/sylx201502016
    [5]
    Wang G, Luo B, Zhang X, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading[J]. Review of Scientific Instruments, 2013, 84(1):015117. doi: 10.1063/1.4788935
    [6]
    Davis J P, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator[J]. Physics of Plasmas, 2005, 12(5):056310. doi: 10.1063/1.1871954
    [7]
    Davis J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa[J]. Journal of Applied Physics, 2006, 99(10):103512-103512-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=77753de7c645e2e3af9b3c6e90d85bd8
    [8]
    Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. Journal of Applied Physics, 2014, 116(20):204903. doi: 10.1063/1.4902863
    [9]
    Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 2014, 511(7509):330-333. doi: 10.1038/nature13526
    [10]
    Luo Binqiang, Wang Guiji, Mo Jianjun, et al. Verification of conventional equations of state for tantalum under quasi-isentropic compression[J]. Jounal of Applied Physics, 2014, 116(19):193506. doi: 10.1063/1.4902064
    [11]
    Smith R F, Eggert J H, Jankowski A, et al. Stiff Response of aluminum under ultrafast shockless compression to 110 GPa[J].Physical Review Letters, 2007, 98(6):065701. doi: 10.1103/PhysRevLett.98.065701
    [12]
    Asay J R, Ao T, Davis J, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression[J]. Journal of Applied Physics, 2008, 103(8):083514. doi: 10.1063/1.2902855
    [13]
    Ao T, Knudson M D, Asay J R, et al. Strength of lithium fluoride under shockless compression to 114 GPa[J]. Journal of Applied Physics, 2009, 106(10):103507-103507-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e23ba0afada6fde67baacf6ad99e237
    [14]
    Brown J L, Alexander C S, Asay J R, et al., Flow strength of tantalum under ramp compression to 250 GPa[J].Journal of Applied Physics, 2014.115(4):043530. doi: 10.1063/1.4863463
    [15]
    罗斌强, 王桂吉, 谭福利, 等.磁驱动准等熵压缩下LY12铝的强度测量[J].力学学报, 2014.46(2):241-247. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201402009.htm

    Luo Binqiang, Wang Guiji, Tan Fuli, et al. Measurement of dynamic strength of LY12 aluminum under magnetically driven quasi-isentropic compression[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2):241-247. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201402009.htm
    [16]
    Smith R F, Eggert J H, Swift D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron[J]. Journal of Applied Physics, 2013, 114(22):223507. doi: 10.1063/1.4839655
    [17]
    Rigg P A, Greeff C W, Knudson M D. Influence of impurities on the a to w phase transition in zirconium under dynamic loading conditions[J]. Journal of Applied Physics, 2009, 106(12):123532-1-123532-9. doi: 10.1063/1.3267325
    [18]
    种涛, 王桂吉, 谭福利, 等.磁驱动准等熵压缩下铁的相变[J].中国科学:物理学力学天文学, 2014, 44(6):630-636. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201406011.htm

    Zhong Tao, Wang Guiji, Tan Fuli, et al. Phase transition of iron under magnetically driven quasi-isentropic compression[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(6):630-636. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201406011.htm
    [19]
    孙承纬. 磁驱动等熵压缩和高速飞片技术, 动高压原理与技术[M]. 经福谦, 陈俊祥, 主编. 北京: 国防工业出版社, 2006: 221
    [20]
    Hayes D. Backward integration of the equation of motion to correct for free surface perturbations: SAND2001-1440[R]. Albuquerque, New Mexico, USA: Sandia National Laboratorys, 2001. https://www.osti.gov/biblio/783087/
    [21]
    张红平, 孙承纬, 李牧, 等.准等熵实验数据处理的反积分方法研究[J].力学学报, 2011, 43(1):105-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100042122

    Zhang Hongping, Sun Cheng wei, Li Mu, et al. Backward integration method in data processing of quasi-isentropic compression experiments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):105-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100042122
    [22]
    Xue Quanxi, Wang Zhebin, Jiang Shaoen, et al. Characteristic method for isentropic compression simulation[J].AIP Advances, 2014, 4(5):057127. doi: 10.1063/1.4880039
    [23]
    Davis J P. CHARICE 1. 0: An IDL application for characteristics-based inverse analysis of isentropic compression experiments: SAND2007-4984[R]. Albuquerque, New Mexico, USA: Sandia National Laboratorys, 2007.
    [24]
    Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(25):679-694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0f72dcaf714e7ca22c8da7485c488a3
    [25]
    Brown J L, Alexander C S, Asay J R, et al. Extracting strength from high pressure ramp-release experiments[J]. Journal of Applied Physics, 2013, 114(22):223518-223518-16. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231766782/
    [26]
    Brown J L, Knudson M D, Alexander C S, et al. Shockless compression and release behavior of beryllium to 110 GPa[J]. Journal of Applied Physics, 2014, 116(3):033502. doi: 10.1063/1.4890232
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (4329) PDF downloads(279) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return