Volume 44 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
PEI Bei, HU Ziwei, HAN Yuliang, XU Mengjiao, CHEN Liwei, SHAO Xiangyu. Study on influence of modified chlorine-containing compounds on N2/water mist to suppress LPG explosion[J]. Explosion And Shock Waves, 2024, 44(11): 115401. doi: 10.11883/bzycj-2023-0340
Citation: PEI Bei, HU Ziwei, HAN Yuliang, XU Mengjiao, CHEN Liwei, SHAO Xiangyu. Study on influence of modified chlorine-containing compounds on N2/water mist to suppress LPG explosion[J]. Explosion And Shock Waves, 2024, 44(11): 115401. doi: 10.11883/bzycj-2023-0340

Study on influence of modified chlorine-containing compounds on N2/water mist to suppress LPG explosion

doi: 10.11883/bzycj-2023-0340
  • Received Date: 2023-09-25
  • Rev Recd Date: 2024-01-19
  • Available Online: 2024-09-05
  • Publish Date: 2024-11-15
  • In order to improve the explosion suppression efficiency of liquefied petroleum gas (LPG), a self-designed semi-open organic glass pipeline was used to build the N2/water mist explosion suppression experimental platform. The explosion suppression effect of N2/water mist containing modified chlorine compounds was analyzed from four aspects: explosion overpressure, flame propagation velocity and its peak arrival time, and flame structure. The results show that the chlorine compounds are selective to surfactants. The synergistic effect between KCl, NaCl and NH4Cl and fatty alcohol polyoxyethylene ether (AeO9) and silicone surfactant (Sicare2235) is better. The maximum explosion overpressure and flame propagation velocity are obviously reduced, and their arrival time is obviously prolonged. When sodium dodecyl sulfate (SDS) only interacts with NaCl, the explosion suppression effect is significantly improved. While when SDS interacts with the other three chloride salts, there is no synergistic effect or even explosion-promoting effect. Explosion enhancement occurs when FeCl2 cooperates with surfactants. When the chlorine compound and the surfactant act together, there is an optimal value for the surface tension value, when the surface tension is 20 mN/m, the explosion suppression efficiency is the best. The numerical simulation results of chemical kinetics show that the modified chlorine compound N2 water mist can effectively reduce the adiabatic flame temperature, consume key free radicals, and interrupt the combustion chain reaction. The synergistic mechanism of explosion suppression is mainly reflected in three aspects: N2 inerting dilution, surfactant regulation of water mist particle size increase cooling effect and inhibition of chain reaction. The research results will provide technical guidance for the prevention and suppression of liquefied petroleum gas explosion accidents in China.
  • loading
  • [1]
    孔得朋, 张红杰, 何旭. 油罐火灾及细水雾灭火教学实验平台 [J]. 实验技术与管理, 2021, 38(1): 105–108. DOI: 10.16791/j.cnki.sjg.2021.01.022.

    KONG D P, ZHANG H J, HE X. Oil tank fire and water mist fire extinguishing teaching experiment platform [J]. Experimental technology and management, 2021, 38(1): 105–108. DOI: 10.16791/j.cnki.sjg.2021.01.022.
    [2]
    SHAO J, ZHU Z, XU B, et al. Triage and evaluation of blast-injured patients in wenling liquefied petroleum gas tanker explosion[J]. Journal of Burn Care & Research: Official Publication of the American Burn Association, 2023, 44(6): 1492–1501. DOI: 10.1093/JBCR/IRAD068.
    [3]
    JIN R, YANG M, WENG T, et al. Epidemiology and early bacteriology of extremely severe burns from an lpg tanker explosion in eastern China [J]. Journal of epidemiology and global health, 2022, 12(4): 478–485. DOI: 10.1007/S44197-022-00066-0.
    [4]
    SHARMA A, PARIKH J, SINGH C. Transition to LPG for cooking: A case study from two states of India [J]. Energy for Sustainable Development, 2019(51):63–72.
    [5]
    LYU S, ZHANG S, HUANG X, etal. Investigation and modeling of the LPG tank truck accident in Wenling, China [J]. Process Safety and Environmental Protection, 2022, 157: 493–508. DOI: 10.1016/J.PSEP.2021.10.022.
    [6]
    ZHU C L, ZHU J Y, WANG L, et al. Lessons learned from analyzing a VCE accident at a chemical plant [J]. Journal of Loss Prevention in the Process Industries, 2017, 50: 397–402. DOI: 10.1016/j.jlp.2017.11.004.
    [7]
    LIANG H, WANG T, LUO Z, et al. Risk assessment of liquefied petroleum gas explosion in a limited space [J]. ACS Omega, 2021, 6(38): 24683–24692. DOI: 10.1021/ACSOMEGA.1C03430.
    [8]
    罗振敏, 梁鹤, 王涛, 等. 初始压力和温度对有限空间中液化石油气爆炸特性的影响[C]// 中国职业安全健康协会2020年学术年会. 山东, 烟台, 2020. DOI: 10.26914/c.cnkihy.2020.028748.

    LUO Z M, LIANG H, WANG T, et al. The influence of initial pressure and temperature on the explosion characteristics of liquefied petroleum gas in limited space [C]// China Occupational Safety and Health Association 2020 Academic Annual Meeting. Yantai, Shandong, 2020. DOI: 10.26914/c.cnkihy.2020.028748.
    [9]
    蔡运雄, 杜扬, 王世茂, 等. 封闭管道油气爆炸超压及火焰传播特性 [J]. 中国安全生产科学技术, 2019, 15(6): 61–66.

    CAI Y X, DU Y, WANG S M, et al. Characteristics of overpressure and flame propagation of oil and gas explosion in closed pipelines [J]. Science and Technology for Safe Production in China, 2019, 15(6): 61–66.
    [10]
    邵辉, 段国宁, 邵峰, 等. 液化石油气点火能试验及爆炸火焰传播分析 [J]. 中国安全科学学报, 2011, 21(8): 54–60. DOI: 10.16265/j.cnki.issn1003-3033.2011.08.017.

    SHAO H, DUAN G N, SHAO F, et al. Liquefied petroleum gas ignition energy test and explosion flame propagation analysis [J]. Chinese Journal of Safety Science, 2011, 21(8): 54–60. DOI: 10.16265/j.cnki.issn1003-3033.2011.08.017.
    [11]
    张志斌, 叶继红. 高速路上LPG罐车泄漏爆炸危险性分析 [J]. 工业安全与环保, 2023, 49(4): 5–10. DOI: 10.3969/j.issn.1001-425X.2023.04.002.

    ZHANG Z B, YE J H. Risk analysis of LPG tank car leakage and explosion on expressway [J]. Industrial Safety and Environmental Protection, 2023, 49(4): 5–10. DOI: 10.3969/j.issn.1001-425X.2023.04.002.
    [12]
    余爽. 基于ALOHA的LPG槽罐车火灾爆炸事故模拟 [J]. 消防科学与技术, 2016, 35(9): 1347–1349. DOI: 10.3969/j.issn.1009-0029.2016.09.048.

    YU S. Fire and explosion accident simulation of LPG tanker based on ALOHA [J]. Fire Science and Technology, 2016, 35(9): 1347–1349. DOI: 10.3969/j.issn.1009-0029.2016.09.048.
    [13]
    罗振敏, 解超, 王九柱, 等. N2和CO2对液化石油气(LPG)惰化抑爆效能对比分析 [J]. 化工进展, 2019, 38(6): 2574–2580. DOI: 10.16085/j.issn.1000-6613.2018-1788.

    LUO Z M, XIE C, WANG J Z, et al. Comparative analysis of inerting and explosion suppression efficiency of N2 and CO2 on liquefied petroleum gas (LPG) [J]. Chemical Progress, 2019, 38(6): 2574–2580. DOI: 10.16085/j.issn.1000-6613.2018-1788.
    [14]
    周宁, 李海涛, 任常兴, 等. 氮气、二氧化碳对液化石油气的惰化抑爆研究 [J]. 消防科学与技术, 2016, 35(6): 733–737.

    ZHOU N, LI H T, REN C X, et al. Study on the inerting and explosion suppression of liquefied petroleum gas by nitrogen and carbon dioxide [J]. Fire Science and Technology, 2016, 35(6): 733–737.
    [15]
    何昆. 二氧化碳对液化石油气抑爆实验研究 [J]. 消防科学与技术, 2015, 34(7): 841–843.

    HE K. Experimental study on explosion suppression of liquefied petroleum gas by carbon dioxide [J]. Fire Science and Technology, 2015, 34(7): 841–843.
    [16]
    WANG J, LIANG Y, ZHAO Z. Effect of N2 and CO2 on explosion behavior of H2-liquefied petroleum gas-air mixtures in a confined space [J]. International Journal of Hydrogen Energy, 2022, 47(56):23887–23897. DOI: 10.1016/J.IJHYDENE.2022.05.152.
    [17]
    夏远辰, 张彬, 王博乔, 等. 超细水雾对氢气-甲烷预混气体爆燃的抑制机理实验研究 [J]. 大连海事大学学报, 2022(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.

    XIA Y C, ZHANG B, WANG B Q et al. Experimental study on the inhibition mechanism of ultrafine water mist on hydrogen-methane premixed gas deflagration [J]. Journal of Dalian Maritime University, 2022(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.
    [18]
    SONG Y, ZHANG Q. Quantitative research on gas explosion inhibition by water mist [J]. Journal of Hazardous Materials, 2019, 363: 16–25. DOI: 10.1016/j.jhazmat.2018.09.059.
    [19]
    常新明, 张红军, 魏垂胜, 等. 细水雾粒径对管内瓦斯爆炸特性的影响机理研究 [J]. 河南理工大学学报(自然科学版), 2021, 40(5): 8–15. DOI: 10.16186/j.cnki.1673-9787.2020110078.

    CHANG X M, ZHANG H J, WEI C S, et al. Study on the influence mechanism of water mist particle size on gas explosion characteristics in pipe [J]. Journal of Henan Polytechnic University (Natural Science Edition), 2021, 40(5): 8–15. DOI: 10.16186/j.cnki.1673-9787.2020110078.
    [20]
    裴蓓, 韦双明, 陈立伟, 等. CO2-超细水雾对CH4/Air初期爆炸特性的影响 [J]. 爆炸与冲击, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147.

    PEI B, WEI S M, CHEN L W, et al. Effect of CO2-ultrafine water mist on the initial explosion characteristics of CH4/air [J]. Explosion and shock, 2019, 39(2): 025402. DOI: 10.11883/bzycj-2018-0147.
    [21]
    陈晓坤, 林滢, 罗振敏, 等. 水系抑制剂控制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2006(5): 603–606. DOI: 10.11731/j.issn.1673-193x.2019.06.010.

    CHEN X K, LIN Y, LUO Z M, et al. Experimental study on gas explosion control by water system inhibitors [J]. Acta Coale Sinica, 2006(5): 603–606. DOI: 10.11731/j.issn.1673-193x.2019.06.010.
    [22]
    CAO X Y, BI M S, REN J J, et al. Experimental research on explosion suppression affected by ultrafine water mist containing different additives [J]. Journal of Hazardous Materials, 2019, 368: 613–620. DOI: 10.1016/j.jhazmat.2019.01.006.
    [23]
    BADHUK P, RAVIKRISHNA R V. Flame inhibition by aqueous solution of Alkali salts in methane and LPG laminar diffusion flames [J]. Fire Safety Journal, 2022, 130: 103586. DOI: 10.1016/j.firesaf.2022.103586.
    [24]
    杨克, 周越, 周扬, 等. 含PPFBS超细水雾抑制甲烷爆燃的实验研究 [J]. 安全与环境工程, 2020, 27(6): 174–180. DOI: 10.13578/j.cnki.issn.1671-1556.2020.06.025.

    YANG K, ZHOU Y, ZHOU Y, et al. Experimental study on the suppression of methane deflagration by ultrafine water mist containing PPFBS [J]. Safety and Environmental Engineering, 2020, 27(6): 174–180. DOI: 10.13578/j.cnki.issn.1671-1556.2020.06.025.
    [25]
    裴蓓, 杨双杰, 陆丁连, 等. 含复合添加剂N2-双流体细水雾抑制乙醇火焰强化研究 [J]. 工程热物理学报, 2021, 42(1): 260–267.

    PEI B, YANG S J, LU D L, et al. Study on the inhibition of ethanol flame enhancement by N2-two-fluid water mist containing composite additive [J]. Engineering Thermophysics, 2021, 42(1): 260–267.
    [26]
    吴楠, 曹青, 张连超. 有机硅/碳氢表面活性剂对水成膜灭火剂性能的影响 [J]. 消防科学与技术, 2020, 39(7): 997–1000. DOI: 10.3969/j.issn.1009-0029.2020.07.030.

    WU N, CAO Q, ZHANG L C. Effects of silicone/hydrocarbon surfactants on the performance of aqueous film-forming extinguishing agents [J]. Fire Science and Technology, 2020, 39(7): 997–1000. DOI: 10.3969/j.issn.1009-0029.2020.07.030.
    [27]
    WANG T, YANG P, YI W, et al. Effect of obstacle shape on the deflagration characteristics of premixed LPG-air mixtures in a closed tube [J]. Process Safety and Environmental Protection, 2022, 168: 248–256. DOI: 10.1016/j.psep.2022.09.079.
    [28]
    IBRAHIM S S, MASRI B. The effects of obstructions on overpressure resulting from premixed flame deflagration [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3). DOI: 10.1016/S0950-4230(00)00024-3.
    [29]
    TRAN M V, WON S S, JEONG P, OH B K et al. Effects of hydrocarbon addition on cellular instabilities in expanding syngas-air spherical premixed flames [J]. International Journal of Hydrogen Energy, 2009, 34(16): 6961–6969. DOI: 10.1016/j.ijhydene.2009.06.067.
    [30]
    CAO X, WANG Z, LU Y, et al. Numerical simulation of methane explosion suppression by ultrafine water mist in a confined space [J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2021, 109:103777. DOI: 10.1016/J.TUST.2020.103777.
    [31]
    PEI B, LI S, YANG S, et al. Flame propagation inhibition study on methane/air explosion using CO2 twin-fluid water mist containing potassium salt additives [J]. Journal of Loss Prevention in the Process Industries, 2022, 78: 104817. DOI: 10.1016/j.jlp.2022.104817.
    [32]
    LIU F, KARATAS A E, GUIDER Ö L, et al. Numerical and experimental study of the influence of CO2 and N2 dilution on soot formation in laminar coflow C2H4/air diffusion flames at pressures between 5 and 20 atm [J]. Combustion and Flame, 2015, 162(5): 2231–2247. DOI: 10.1016/j.combustflame.2015.01.020.
    [33]
    贺元骅, 郭君, 王海斌, 等. 低压双流体细水雾抑制锂离子电池热失控研究 [J]. 消防科学与技术, 2020, 39(2): 223–227.

    HE Y H, GUO J, WANG H B, et al. Study on thermal runaway suppression of lithium-ion batteries by low-pressure two-fluid water mist [J]. Fire Science and Technology, 2020, 39(2): 223–227.
    [34]
    刘中麟. 新型水基添加剂灭火有效性研究[D]. 郑州: 郑州大学, 2015: 98–99.

    LIU Z L. Study on fire extinguishing effectiveness of new water-based additives [D]. Zhengzhou: Zhengzhou University, 2015: 98–99.
    [35]
    ZHANG T W, HAO L, HAN Z Y, et al. Experimental study on the synergistic effect of fire extinguishing by water and potassium salts [J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(1): 857–867. DOI: 10.1007/s10973-019-08234-4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (73) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return