Volume 44 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
CHEN Xiaokun, WANG Jun, CHENG Fangming. Research progress on hydrogen gas explosion suppression materials and their suppression mechanisms[J]. Explosion And Shock Waves, 2024, 44(11): 111101. doi: 10.11883/bzycj-2023-0418
Citation: CHEN Xiaokun, WANG Jun, CHENG Fangming. Research progress on hydrogen gas explosion suppression materials and their suppression mechanisms[J]. Explosion And Shock Waves, 2024, 44(11): 111101. doi: 10.11883/bzycj-2023-0418

Research progress on hydrogen gas explosion suppression materials and their suppression mechanisms

doi: 10.11883/bzycj-2023-0418
  • Received Date: 2023-11-21
  • Rev Recd Date: 2024-04-10
  • Available Online: 2024-04-11
  • Publish Date: 2024-11-15
  • Hydrogen is crucial in the global shift towards clean energy and is gaining significance in the energy industry, while its high flammability and explosive hazard make its safety a research hotspot. It is crucial to thoroughly investigate and assess the safety of hydrogen as it progresses toward commercialization in the energy sector. This article reviews the latest advancements in hydrogen explosion suppression conducted by researchers around the world, aiming at offering a scientific foundation and technical approach to efficiently manage and reduce the damaging impacts of hydrogen explosion incidents. The article focuses on the study of hydrogen explosion suppression materials and their suppression mechanisms, so as to provide scientific understanding and technical support for the safe application of hydrogen. Firstly, it systematically introduces the research progress in hydrogen explosion suppression by discussing four significant categories, i.e., gas, liquid, solid, and multiphase composite explosion suppression materials. By comparing and analyzing the effects, key performance parameters, and the variation rules of these materials, the current research status and effectiveness of various explosion suppression materials are sorted out, helping to deepen the understanding of the explosion suppression effects of these materials. Secondly, focusing on the suppression mechanism, the research delves into the vital role of explosion suppression materials in suppressing hydrogen explosions. Starting from three dimensions, i.e., physical suppression, chemical suppression, and physicochemical comprehensive suppression, it elucidates the mechanisms of action of explosion suppression materials in the suppression process, contributing to a deeper understanding of the role of explosion suppression materials in suppressing or mitigating hydrogen explosions. Finally, the article looks forward to the future development directions of hydrogen explosion suppression materials, especially emphasizing the importance of further studies on the high-efficiency explosion suppression materials and the challenges faced in practical applications. This review is aimed to provide scientific reference and inspiration for the research, development, and application of new hydrogen explosion suppression materials.
  • loading
  • [1]
    RICCI M, BELLABY P, FLYNN R. What do we know about public perceptions and acceptance of hydrogen ? : a critical review and new case study evidence [J]. International Journal of Hydrogen Energy, 2008, 33(21): 5868–5880. DOI: 10.1016/j.ijhydene.2008.07.106.
    [2]
    TANG C L, ZHANG Y J, HUANG Z H. Progress in combustion investigations of hydrogen enriched hydrocarbons [J]. Renewable and Sustainable Energy Reviews, 2014, 30: 195–216. DOI: 10.1016/j.rser.2013.10.005.
    [3]
    ACAR C, DINCER I. The potential role of hydrogen as a sustainable transportation fuel to combat global warming [J]. International Journal of Hydrogen Energy, 2020, 45(5): 3396–3406. DOI: 10.1016/j.ijhydene.2018.10.149.
    [4]
    SINGH S, JAIN S, PS V, et al. Hydrogen: A sustainable fuel for future of the transport sector [J]. Renewable and Sustainable Energy Reviews, 2015, 51: 623–633. DOI: 10.1016/j.rser.2015.06.040.
    [5]
    MAYRHOFER M, KOLLER M, SEEMANN P, et al. Assessment of natural gas/hydrogen blends as an alternative fuel for industrial heat treatment furnaces [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21672–21686. DOI: 10.1016/j.ijhydene.2021.03.228.
    [6]
    MORADI R, GROTH K M. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis [J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254–12269. DOI: 10.1016/j.ijhydene.2019.03.041.
    [7]
    林言训, 秦家俊. 小型氮肥厂的爆炸事故及預防措施 [J]. 劳动, 1963(5): 32–33.

    LIN Y X, QIN J J. Explosion accidents and preventive measures in small nitrogen fertilizer plants [J]. Labor, 1963(5): 32–33.
    [8]
    汪德山. 氢气燃爆现象种种 [J]. 甘肃消防, 1999(8): 17.

    Wang D S. Various hydrogen explosion phenomena [J]. Gansu Fire Protection, 1999(8): 17.
    [9]
    LAHNAOUI A, WULF C, HEINRICHS H, et al. Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks [J]. International Journal of Hydrogen Energy, 2019, 44(35): 19302–19312. DOI: 10.1016/j.ijhydene.2018.10.234.
    [10]
    SAZALI N. Emerging technologies by hydrogen: a review [J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753–18771. DOI: 10.1016/j.ijhydene.2020.05.021.
    [11]
    AARSKOG F G, HANSEN O R, STRØMGREN T, et al. Concept risk assessment of a hydrogen driven high speed passenger ferry [J]. International Journal of Hydrogen Energy, 2020, 45(2): 1359–1372. DOI: 10.1016/j.ijhydene.2019.05.128.
    [12]
    郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究 [D]. 重庆: 重庆大学, 2017.

    ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methane deflagration in ducts [D]. Chongqing: Chongqing University, 2017.
    [13]
    高玉刚. 管道中可燃气体燃爆特性研究 [D]. 淮南: 安徽理工大学, 2011.

    GAO Y G. Study on burning explosion characteristics of flammable gas in tube [D]. Huainan: Anhui University of Science & Technology, 2011.
    [14]
    孙占强, 余磊. 长输管道合于使用评价常见问题总结 [J]. 云南化工, 2023, 50(6): 163–165. DOI: 10.3969/j.issn.1004-275X.2023.06.44.

    SUN Z Q, YU L. Summary of common problems in the evaluation of suitability for use of long-distance pipelines [J]. Yunnan Chemical Technology, 2023, 50(6): 163–165. DOI: 10.3969/j.issn.1004-275X.2023.06.44.
    [15]
    CROWL D A, JO Y D. The hazards and risks of hydrogen [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(2): 158–164. DOI: 10.1016/j.jlp.2007.02.002.
    [16]
    NG H D, LEE J H S. Comments on explosion problems for hydrogen safety [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 136–146. DOI: 10.1016/j.jlp.2007.06.001.
    [17]
    李一鸣. 七氟丙烷抑制甲烷-空气爆炸的实验研究 [D]. 大连: 大连理工大学, 2018.

    LI Y M. Experimental study of suppressing the methane/air explosion by heptafluoropropane [D]. Dalian: Dalian University of Technology, 2018.
    [18]
    SU Y, LUO Z M, WANG T, et al. Effect of nitrogen on deflagration characteristics of hydrogen/methane mixture [J]. International Journal of Hydrogen Energy, 2022, 47(15): 9156–9168. DOI: 10.1016/j.ijhydene.2022.01.013.
    [19]
    RAZUS D, MITU M, GIURCAN V, et al. Numerical study of pressure and composition influence on laminar flame propagation in nitrogen-diluted H2-O2 mixtures [J]. Revue Roumaine de Chimie, 2020, 65(6): 529–537. DOI: 10.33224/rrch.2020.65.6.02.
    [20]
    PARK J, KIM J S, CHUNG J O, et al. Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames [J]. International Journal of Hydrogen Energy, 2009, 34(20): 8756–8762. DOI: 10.1016/j.ijhydene.2009.08.046.
    [21]
    刘原一, 朱轶铭, 熊英莹, 等. N2/CO2气氛对CO/H2爆燃特性的影响 [J]. 燃烧科学与技术, 2014, 20(5): 383–387. DOI: 10.11715/rskxjs.R201404011.

    LIU Y Y, ZHU Y M, XIONG Y Y, et al. Influence of N2/CO2 on deflagration characteristics of CO/H2 [J]. Journal of Combustion Science and Technology, 2014, 20(5): 383–387. DOI: 10.11715/rskxjs.R201404011.
    [22]
    YAN C C, BI M S, LI Y C, et al. Effects of nitrogen and carbon dioxide on hydrogen explosion behaviors near suppression limit [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104228. DOI: 10.1016/j.jlp.2020.104228.
    [23]
    LI Y C, BI M S, HUANG L, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere [J]. Fuel Processing Technology, 2018, 180: 96–104. DOI: 10.1016/j.fuproc.2018.08.015.
    [24]
    WEI H Q, XU Z L, ZHOU L, et al. Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14798–14805. DOI: 10.1016/j.ijhydene.2018.06.038.
    [25]
    WANG L Q, MA H H, SHEN Z W. Explosion characteristics of hydrogen-air mixtures diluted with inert gases at sub-atmospheric pressures [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22527–22536. DOI: 10.1016/j.ijhydene.2019.01.059.
    [26]
    邹颖, 董冰岩, 查裕学, 等. 密闭受限空间内N2、CO2对H2/Air混合气体的抑爆效果研究 [J]. 科技与创新, 2022(17): 87–92. DOI: 10.15913/j.cnki.kjycx.2022.17.028.

    ZOU Y, DONG B Y, ZHA Y X, et al. Study on the explosion suppression effect of N2 and CO2 on H2/air mixed gas in confined enclosed spaces [J]. Science and Innovation, 2022(17): 87–92. DOI: 10.15913/j.cnki.kjycx.2022.17.028.
    [27]
    WANG J Y, LIANG Y T, ZHAO Z Z. Effect of N2 and CO2 on explosion behavior of H2-liquefied petroleum gas-air mixtures in a confined space [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23887–23897. DOI: 10.1016/j.ijhydene.2022.05.152.
    [28]
    CHANG X Y, BAI C H, ZHANG B. The effect of gas jets on the explosion dynamics of hydrogen-air mixtures [J]. Process Safety and Environmental Protection, 2022, 162: 384–394. DOI: 10.1016/j.psep.2022.04.032.
    [29]
    WU Y, YU X, WANG Z C, et al. The flame mitigation effect of N2 and CO2 on the hydrogen jet fire [J]. Process Safety and Environmental Protection, 2022, 165: 658–670. DOI: 10.1016/j.psep.2022.07.027.
    [30]
    ZHANG S Y, WEN X P, GUO Z D, et al. Experimental study on the multi-level suppression of N2 and CO2 on hydrogen-air explosion [J]. Process Safety and Environmental Protection, 2023, 169: 970–981. DOI: 10.1016/j.psep.2022.11.069.
    [31]
    邹颖. 密闭空间内H2爆炸及CO2、N2抑爆过程的数值模拟及实验研究 [D]. 赣州: 江西理工大学, 2022. DOI: 10.27176/d.cnki.gnfyc.2022.000560.

    ZOU Y. Numerical simulation and experimental study of H2 explosion and SUPPR ESSION of CO2 and N2 explosion in confined space [D]. Ganzhou: Jiangxi University of Science and Technology, 2022. DOI: 10.27176/d.cnki.gnfyc.2022.000560.
    [32]
    TROPIN D. Numerical modeling of suppression of detonation waves in hydrogen-air mixture by system of inert particles clouds [J]. International Journal of Hydrogen Energy, 2022, 47(66): 28699–28709. DOI: 10.1016/j.ijhydene.2022.06.169.
    [33]
    姜程山. 氢气的爆炸极限抑制研究 [D]. 济南: 山东建筑大学, 2017.

    JIANG C S. Inhibition of hydrogen's explosion limits [D]. Ji’nan: Shandong Jianzhu University, 2017.
    [34]
    马文丽. 哈龙灭火剂替代产品的分类及特点研究 [J]. 忻州师范学院学报, 2008, 24(4): 132–134. DOI: 10.3969/j.issn.1671-1491.2008.04.047.

    MA W L. Study on classification and characteristics of Halon fire extinguishing agent substitute products [J]. Journal of Xinzhou Teachers University, 2008, 24(4): 132–134. DOI: 10.3969/j.issn.1671-1491.2008.04.047.
    [35]
    FAN R J, WANG Z R, GUO W J, et al. Experimental and theoretical study on the suppression effect of CF3CHFCF3 (FM-200) on hydrogen-air explosion [J]. International Journal of Hydrogen Energy, 2022, 47(26): 13191–13198. DOI: 10.1016/j.ijhydene.2022.02.062.
    [36]
    DRAKON A, EREMIN A, MATVEEVA N, et al. The opposite influences of flame suppressants on the ignition of combustible mixtures behind shock waves [J]. Combustion and Flame, 2017, 176: 592–598. DOI: 10.1016/j.combustflame.2016.11.001.
    [37]
    DRAKON A, EREMIN A. On relative effectiveness of halogenated hydrocarbons for suppression of hydrogen-oxygen mixture autoignition [J]. Combustion Science and Technology, 2018, 190(3): 550–555. DOI: 10.1080/00102202.2017.1402011.
    [38]
    GAO M D, BI M S, YE L L, et al. Suppression of hydrogen-air explosions by hydrofluorocarbons [J]. Process Safety and Environmental Protection, 2021, 145: 378–387. DOI: 10.1016/j.psep.2020.08.036.
    [39]
    SHANG S, BI M S, ZHANG K, et al. Suppression of hydrogen-air explosions by isobutene with special molecular structure [J]. International Journal of Hydrogen Energy, 2022, 47(61): 25864–25875. DOI: 10.1016/j.ijhydene.2022.06.012.
    [40]
    SHANG S, BI M S, ZHANG Z L, et al. Synergistic effects of isobutene and carbon dioxide on suppressing hydrogen-air explosions [J]. International Journal of Hydrogen Energy, 2022, 47(60): 25433–25442. DOI: 10.1016/j.ijhydene.2022.05.256.
    [41]
    李卓然, 夏远辰, 张彬, 等. 细水雾对置障管内预混气体抑爆机理研究 [J]. 消防科学与技术, 2021, 40(6): 884–887. DOI: 10.3969/j.issn.1009-0029.2021.06.024.

    LI Z R, XIA Y C, ZHANG B, et al. Study on the suppression mechanism of water mist on the deflagration of premixed methane gas in a barrier tube [J]. Fire Science and Technology, 2021, 40(6): 884–887. DOI: 10.3969/j.issn.1009-0029.2021.06.024.
    [42]
    汪剑辉, 刘飞, 薛一江. 可燃气云抑爆技术初探 [J]. 工程爆破, 2011, 17(2): 19–22. DOI: 10.3969/j.issn.1006-7051.2011.02.005.

    WANG J H, LIU F, XUE Y J. Preliminary discuss on explosion suppression technique of flammable gas cloud [J]. Engineering Blasting, 2011, 17(2): 19–22. DOI: 10.3969/j.issn.1006-7051.2011.02.005.
    [43]
    ZALOSH R G, BAJPAI S N. Effect of water fogs on the deliberate ignition of hydrogen. Final report: EPRI-NP-2637 [R]. Norwood: Factory Mutual Research Corp. , 1982.
    [44]
    LUANGDILOK W, BENNETT R B. Fog inerting effects on hydrogen combustion in a PWR ice condenser containment [J]. Journal of Heat Transfer, 1995, 117(2): 502–507. DOI: 10.1115/1.2822550.
    [45]
    BUTZ J R, FRENCH P. Application of fine water mists to hydrogen deflagrations [C]//Proceedings of the Halon Alternatives Technical Working Conference. Albuquerque, NM. 1993: 345-356.
    [46]
    JONES S J, AVERILL A F, INGRAM J M, et al. Mitigation of hydrogen-air explosions using fine water mist sprays [C]// Symposium on Hazards: Process Safety and Environmental Protection. Manchester, UK: IChemE Symposium Series No. 151, 2006: 1-10.
    [47]
    INGRAM J M, AVERILL A F, BATTERSBY P N, et al. Suppression of hydrogen–oxygen–nitrogen explosions by fine water mist: Part 1. Burning velocity [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19250–19257. DOI: 10.1016/j.ijhydene.2012.09.092.
    [48]
    MODAK A U, ABBUD-MADRID A, DELPLANQUE J P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen–, methane–, and propane–air flames [J]. Combustion and Flame, 2006, 144(1/2): 103–111. DOI: 10.1016/j.combustflame.2005.07.003.
    [49]
    XIA Y C, ZHANG B, ZHANG J N, et al. Experimental research on combined effect of obstacle and local spraying water fog on hydrogen/air premixed explosion [J]. International Journal of Hydrogen Energy, 2022, 47(94): 40099–40115. DOI: 10.1016/j.ijhydene.2022.09.152.
    [50]
    胡耀元, 钟依均, 应桃开, 等. H2, CO, CH4多元爆炸性混合气体支链爆炸阻尼效应 [J]. 化学学报, 2004, 62(10): 956–962. DOI: 10.3321/j.issn:0567-7351.2004.10.006.

    HU Y Y, ZHONG Y J, YING T K, et al. Damping effect on the branch-chain explosion of polybasic explosive mixture gas containing H2, CO and CH4 [J]. Acta Chimica Sinica, 2004, 62(10): 956–962. DOI: 10.3321/j.issn:0567-7351.2004.10.006.
    [51]
    WEI S M, YU M G, PEI B, et al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3 [J]. Fuel, 2022, 328: 125235. DOI: 10.1016/j.fuel.2022.125235.
    [52]
    WANG Z R, XU H, LU Y W, et al. Experimental and theoretical study on the suppression effect of water mist containing dimethyl methylphosphonate (DMMP) on hydrogen jet flame [J]. Fuel, 2023, 331: 125813. DOI: 10.1016/j.fuel.2022.125813.
    [53]
    夏煜, 程扬帆, 胡芳芳, 等. 典型固体抑爆剂对乙炔-空气的抑爆特性 [J]. 高压物理学报, 2022, 36(6): 065201. DOI: 10.11858/gywlxb.20220580.

    XIA Y, CHENG Y F, HU F F, et al. Inhibition characteristics of typical solid explosion suppressors on acetylene-air explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065201. DOI: 10.11858/gywlxb.20220580.
    [54]
    LUO Z M, SU Y, CHEN X K, et al. Effect of BC powder on hydrogen/methane/air premixed gas deflagration [J]. Fuel, 2019, 257: 116095. DOI: 10.1016/j.fuel.2019.116095.
    [55]
    田莉. 受限空间内氢气/甲烷/空气混合物爆炸特性及抑爆研究 [D]. 杭州: 中国计量大学, 2019. DOI: 10.27819/d.cnki.gzgjl.2019.000072.

    TIAN L. Study on characteristics and suppression of hydrogen/methane/air mixture explosion in enclosed space [D]. Hangzhou: China Jiliang University, 2019. DOI: 10.27819/d.cnki.gzgjl.2019.000072.
    [56]
    TSAI Y T, FU T, ZHOU Q. Explosion characteristics and suppression of hybrid Mg/H2 mixtures [J]. International Journal of Hydrogen Energy, 2021, 46(78): 38934–38943. DOI: 10.1016/j.ijhydene.2021.09.145.
    [57]
    LI Y, CHEN X F, YUAN B H, et al. Synthesis of a novel prolonged action inhibitor with lotus leaf-like appearance and its suppression on methane/hydrogen/air explosion [J]. Fuel, 2022, 329: 125401. DOI: 10.1016/j.fuel.2022.125401.
    [58]
    LI Y, ZHAO Q, LIU L J, et al. Investigation on the flame and explosion suppression of hydrogen/air mixtures by porous copper foams in the pipe with large aspect ratio [J]. Journal of Loss Prevention in the Process Industries, 2022, 76: 104744. DOI: 10.1016/j.jlp.2022.104744.
    [59]
    BIVOL G Y, GOLOVASTOV S V. Suppression of hydrogen-air detonation using porous materials in the channels of different cross section [J]. International Journal of Hydrogen Energy, 2021, 46(24): 13471–13483. DOI: 10.1016/j.ijhydene.2021.01.052.
    [60]
    SONG X Z, ZUO X C, YANG Z K, et al. The explosion-suppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures [J]. International Journal of Hydrogen Energy, 2020, 45(56): 32686–32701. DOI: 10.1016/j.ijhydene.2020.08.197.
    [61]
    段玉龙, 王硕, 贺森, 等. 多孔材料下气体爆炸转扩散燃烧的特性研究 [J]. 爆炸与冲击, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.

    DUAN Y L, WANG S, HE S, et al. Characteristics of gas explosion to diffusion combustion under porous materials [J]. Explosion and Shock Waves, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.
    [62]
    HOLBORN P G, BATTERSBY P, INGRAM J M, et al. Estimating the effect of water fog and nitrogen dilution upon the burning velocity of hydrogen deflagrations from experimental test data [J]. International Journal of Hydrogen Energy, 2013, 38(16): 6882–6895. DOI: 10.1016/j.ijhydene.2013.03.063.
    [63]
    BATTERSBY P N, AVERILL A F, INGRAM J M, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist: part 2: mitigation of vented deflagrations [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19258–19267. DOI: 10.1016/j.ijhydene.2012.10.029.
    [64]
    苏洋, 罗振敏, 王涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响 [J]. 化工进展, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.

    SU Y, LUO Z M, WANG T. Effect of CO2/sepiolite explosion suppressant on hydrogen/methane deflagration characteristic parameters [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.
    [65]
    YANG Z K, ZHAO K, SONG X Z, et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture [J]. International Journal of Hydrogen Energy, 2021, 46(70): 34998–35013. DOI: 10.1016/j.ijhydene.2021.08.035.
    [66]
    程方明, 南凡, 罗振敏, 等. 瓦斯抑爆材料及机理研究进展与发展趋势 [J]. 煤炭科学技术, 2021, 49(8): 114–124. DOI: 10.13199/j.cnki.cst.2021.08.015.

    CHENG F M, NAN F, LUO Z M, et al. Research progress and development trend of gas explosion suppression materials and mechanism [J]. Coal Science and Technology, 2021, 49(8): 114–124. DOI: 10.13199/j.cnki.cst.2021.08.015.
    [67]
    陈硕, 路长, 苏振国, 等. 煤矿瓦斯爆炸发展规律及防治的综述及展望 [J]. 火灾科学, 2021, 30(2): 63–79. DOI: 10.3969/j.issn.1004-5309.2021.02.01.

    CHEN S, LU C, SU Z G, et al. Review on development and prevention of coal mine gas explosion [J]. Fire Safety Science, 2021, 30(2): 63–79. DOI: 10.3969/j.issn.1004-5309.2021.02.01.
    [68]
    MOORE P E. Suppressants for the control of industrial explosions [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 119–123. DOI: 10.1016/0950-4230(95)00045-3.
    [69]
    王任伟. N2/CO2/Ar稀释气体对甲烷预混层流火焰速度影响的物理与化学效应研究 [D]. 武汉: 华中科技大学, 2021. DOI: 10.27157/d.cnki.ghzku.2021.002801.

    WANG R W. A thesis submitted in partial fulfillment of the requirements for the degree of master of engineering [D]. Wuhan: Huazhong University of Science and Technology, 2021. DOI: 10.27157/d.cnki.ghzku.2021.002801.
    [70]
    左前明, 程卫民, 汤家轩. 粉体抑爆剂在煤矿应用研究的现状与展望 [J]. 煤炭技术, 2010, 29(11): 78–80.

    ZUO Q M, CHENG W M, TANG J X. Current status and prospects of application and research of powder coal mine explosion suppression agent [J]. Coal Technology, 2010, 29(11): 78–80.
    [71]
    李艳超. 氢气火焰失稳传播与爆炸压力的耦合影响机制研究 [D]. 大连: 大连理工大学, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003558.

    LI Y C. Dynamic couplings of unstable hydrogen flame propagation and explosion pressure evolution [D]. Dalian: Dalian University of Technology, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003558.
    [72]
    SU B, LUO Z M, WANG T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture [J]. Journal of Hazardous Materials, 2021, 403: 123680. DOI: 10.1016/j.jhazmat.2020.123680.
    [73]
    闫彩彩. 近抑爆极限氢气爆炸动力学行为研究 [D]. 大连: 大连理工大学, 2020. DOI: 10.26991/d.cnki.gdllu.2020.000377.

    YAN C C. Study on hydrogen explosion dynamics near explosion suppression limit [D]. Dalian: Dalian University of Technology, 2020. DOI: 10.26991/d.cnki.gdllu.2020.000377.
    [74]
    LI Y C, BI M S, ZHOU Y H, et al. Hydrogen cloud explosion suppression by micron-size water mist [J]. International Journal of Hydrogen Energy, 2022, 47(55): 23462–23470. DOI: 10.1016/j.ijhydene.2022.05.132.
    [75]
    张天巍. 含钾盐添加剂细水雾的灭火有效性及机理研究 [D]. 北京: 北京理工大学, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000014.

    ZHANG T W. Fire-extinguishing performance and mechanism study on water mist with potassium additives [D]. Beijing: Beijing Institute of Technology, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000014.
    [76]
    夏远辰, 张彬, 王博乔, 等. 超细水雾对氢气-甲烷预混气体爆燃抑制机理的实验研究 [J]. 大连海事大学学报, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.

    XIA Y C, ZHANG B, WANG B Q, et al. Experimental research on suppression mechanism of ultrafine water mist on deflagration of hydrogen-methane premixed gas [J]. Journal of Dalian Maritime University, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.
    [77]
    ATKINSON R, BAULCH D L, COX R A, et al. Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: supplement V. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry [J]. Journal of Physical and Chemical Reference Data, 1997, 26(3): 521–1011. DOI: 10.1063/1.556011.
    [78]
    WILLIAMS B A, L’ESPÉRANCE D M, FLEMING J W. Intermediate species profiles in low-pressure methane/oxygen flames inhibited by 2-H heptafluoropropane: comparison of experimental data with kinetic modeling [J]. Combustion and Flame, 2000, 120(1/2): 160–172. DOI: 10.1016/S0010-2180(99)00081-4.
    [79]
    XU W, JIANG Y, QIU R, et al. Influence of halon replacements on laminar flame speeds and extinction limits of hydrocarbon flames [J]. Combustion and Flame, 2017, 182: 1–13. DOI: 10.1016/j.combustflame.2017.03.029.
    [80]
    KATTA V R, TAKAHASHI F, LINTERIS G T. Fire-suppression characteristics of CF3H in a cup burner [J]. Combustion and Flame, 2006, 144(4): 645–661. DOI: 10.1016/j.combustflame.2005.09.006.
    [81]
    ZHANG X, YANG Z, HUANG X, et al. Combustion enhancement and inhibition of hydrogen-doped methane flame by HFC-227ea [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21704–21714. DOI: 10.1016/j.ijhydene.2021.03.250.
    [82]
    PAGLIARO J L, LINTERIS G T, SUNDERLAND P B, et al. Combustion inhibition and enhancement of premixed methane–air flames by halon replacements [J]. Combustion and Flame, 2015, 162(1): 41–49. DOI: 10.1016/j.combustflame.2014.07.006.
    [83]
    左前明, 程卫民, 邹冠贵, 等. 协同增效原理在煤尘抑爆剂中的应用实验 [J]. 重庆大学学报, 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582X.2012.01.020.

    ZUO Q M, CHENG W M, ZOU G G, et al. Applied experiments on coal dust inhibitor based on the theory of synergistic effect [J]. Journal of Chongqing University, 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582X.2012.01.020.
    [84]
    LI Y C, BI M S, YAN C C, et al. Inerting effect of carbon dioxide on confined hydrogen explosion [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22620–22631. DOI: 10.1016/j.ijhydene.2019.04.181.
    [85]
    LI J, HUANG H Y, KOBAYASHI N, et al. Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition [J]. Energy, 2017, 126: 796–809. DOI: 10.1016/j.energy.2017.03.085.
    [86]
    AZATYAN V V, SAIKOVA G R, BALAYAN G V, et al. Dependence of the flammability of hydrogen-air mixtures on the chemical and physical properties of admixtures [J]. Russian Journal of Physical Chemistry A, 2015, 89(3): 369–371. DOI: 10.1134/S0036024415030048.
    [87]
    王志荣. 受限空间气体爆炸传播及其动力学过程研究 [D]. 南京: 南京工业大学, 2005.

    WANG Z R. Study on the dynamics of gas explosion process in confined space [D]. Nanjing: Nanjing Tech University, 2005.
    [88]
    CAO X Y, WANG Z R, LU Y W, et al. Numerical simulation of methane explosion suppression by ultrafine water mist in a confined space [J]. Tunnelling and Underground Space Technology, 2021, 109: 103777. DOI: 10.1016/j.tust.2020.103777.
    [89]
    DOUNIA O, VERMOREL O, POINSOT T. Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles [J]. Combustion and Flame, 2018, 193: 313–326. DOI: 10.1016/j.combustflame.2018.03.033.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(4)

    Article Metrics

    Article views (427) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return