Citation: | XIE Zongwang, WANG Rui, WANG Yuheng, ZHAO Hui, LI Qian. Analysis on mechanical performance and damage evaluation of H-section steel columns during and after impact process[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0119 |
[1] |
HUO J S, ZHANG J Q, LIU Y Z, et al. Dynamic behaviour and catenary action of axially-restrained steel beam under impact loading [J]. Structures, 2017, 11: 84–96. DOI: 10.1016/j.istruc.2017.04.005.
|
[2] |
D’ANTIMO M, LATOUR M, RIZZANO G, et al. Experimental and numerical assessment of steel beams under impact loadings [J]. Journal of Constructional Steel Research, 2019, 158: 230–247. DOI: 10.1016/j.jcsr.2019.03.029.
|
[3] |
Al-THAIRY H, WANG Y C. A numerical study of the behaviour and failure modes of axially compressed steel columns subjected to transverse impact [J]. International Journal of Impact Engineering, 2011, 38(8/9): 732–744. DOI: 10.1016/j.ijimpeng.2011.03.005.
|
[4] |
Al-THAIRY H, WANG Y C. An assessment of the current Eurocode 1 design methods for building structure steel columns under vehicle impact [J]. Journal of Constructional Steel Research, 2013, 88: 164–171. DOI: 10.1016/j.jcsr.2013.05.013.
|
[5] |
Al-THAIRY H, WANG Y C. Simplified FE vehicle model for assessing the vulnerability of axially compressed steel columns against vehicle frontal impact [J]. Journal of Constructional Steel Research, 2014, 102: 190–203. DOI: 10.1016/j.jcsr.2014.07.005.
|
[6] |
AL-THAIRY H A B, WANG Y. Behaviour and design of steel columns subjected to vehicle impact [M]. Zurich: Trans Tech Publications Ltd, 2014. DOI: 10.4028/www.scientific.net/AMM.566.193.
|
[7] |
XIANG S Y, HE Y J, ZHOU X H, et al. Continuous twice-impact analysis of steel parking structure columns [J]. Journal of Constructional Steel Research, 2021, 187: 106989. DOI: 10.1016/j.jcsr.2021.106989.
|
[8] |
王蕊, 郭昭胜, 裴畅. 局部屈曲变形损伤对H型钢柱竖向剩余承载力影响的试验研究 [J]. 建筑结构, 2014, 44(21): 17–22. DOI: 10.19701/j.jzjg.2014.21.004.
WANG R, GUO Z S, PEI C. Experimental study on vertical residual bearing capacity of H-shaped steel column with local buckling deformation [J]. Building Structure, 2014, 44(21): 17–22. DOI: 10.19701/j.jzjg.2014.21.004.
|
[9] |
BAI Y, WANG R, CUI J L. Residual bearing capacity numerical simulation and theoretical analysis of H-shaped steel column impacted under different axis pressure [J]. Advanced Materials Research, 2014, 1065/1066/1067/1068/1069: 1097-1100. DOI: 10.4028/www.scientific.net/AMR.1065-1069.1097.
|
[10] |
ZHAO H, WANG R, LI Q M, et al. Experimental and numerical investigation on impact and post-impact behaviours of H-shaped steel members [J]. Engineering Structures, 2020, 216: 110750. DOI: 10.1016/j.engstruct.2020.110750.
|
[11] |
WANG R, YANG X, ZHAO H, et al. Damage evaluation of axial-loaded H-section steel columns during and after impact loading [J]. Journal of Constructional Steel Research, 2022, 196: 107426. DOI: 10.1016/j.jcsr.2022.107426.
|
[12] |
MAKAREM F S, ABED F. Nonlinear finite element modeling of dynamic localizations in high strength steel columns under impact [J]. International Journal of Impact Engineering, 2013, 52: 47–61. DOI: 10.1016/j.ijimpeng.2012.10.006.
|
[13] |
CHEN Y, WAN J, WANG K, et al. Residual axial bearing capacity of square steel tubes after lateral impact [J]. Journal of Constructional Steel Research, 2017, 137: 325–341. DOI: 10.1016/j.jcsr.2017.06.019.
|
[14] |
韩林海. 钢管混凝土结构: 理论与实践 [M]. 3版. 北京: 科学出版社, 2016: 68–77.
HAN L H. Concrete filled steel tubular structures: theory and practice [M] 3rd ed. Beijing: Science Press, 2016: 68–77.
|
[15] |
侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究 [D]. 北京: 清华大学, 2012.
HOU C C. Study on performance of circular concrete-filled steel tubular (CFST) members under low velocity transverse impact [D]. Beijing: Tsinghua University, 2012.
|
[16] |
COWPER G, SYMONDS P S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams [R]. 1957. DOI: 10.21236/ad0144762.
|
[17] |
ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. DOI: 10.1016/0734-743X(84)90005-8.
|
[18] |
DAI X H, WANG Y C, BAILEY C G. Numerical modelling of structural fire behaviour of restrained steel beam-column assemblies using typical joint types [J]. Engineering Structures, 2010, 32(8): 2337–2351. DOI: 10.1016/j.engstruct.2010.04.009.
|
[19] |
ZHAO H, MEI S Q, WANG R, et al. Round-ended concrete-filled steel tube columns under impact loading: Test, numerical analysis and design method [J]. Thin-Walled Structures, 2023, 191: 111020. DOI: 10.1016/j.tws.2023.111020.
|
[20] |
ZHAO H, XIE Z W, YANG B H, et al. Impact resistance performance of precast reinforced concrete barriers with grouted sleeve and steel angle-to-plate connections [J]. Engineering Structures, 2024, 316: 118533. DOI: 10.1016/j.engstruct.2024.118533.
|
[21] |
WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. DOI: 10.1016/j.jcsr.2012.09.003.
|
[22] |
孔祥韶, 杨豹, 周沪, 等. 基于响应面法的纤维金属层合板抗弹性能优化设计 [J]. 爆炸与冲击, 2022, 42(4): 043301. DOI: 10.11883/bzycj-2021-0146.
KONG X S, YANG B, ZHOU H, et al. Optimal design of ballistic performance of fiber-metal laminates based on the response surface method [J]. Explosion and Shock Waves, 2022, 42(4): 043301. DOI: 10.11883/bzycj-2021-0146.
|
[23] |
樊伟, 孙洋, 申东杰, 等. 带主梁的简化模型与响应面联合的桥梁船撞易损性分析方法 [J]. 湖南大学学报(自然科学版), 2021, 48(3): 34–43,135. DOI: 10.16339/j.cnki.hdxbzkb.2021.03.004.
FAN W, SUN Y, SHEN D J, et al. Vessel-collision vulnerability analysis method of bridge structures based on simplified model with girders and response surface [J]. Journal of Hunan University (Natural Sciences), 2021, 48(3): 34–43,135. DOI: 10.16339/j.cnki.hdxbzkb.2021.03.004.
|
[24] |
樊伟, 毛薇, 庞于涛, 等. 钢筋混凝土柱式桥墩抗车撞可靠度分析研究 [J]. 中国公路学报, 2021, 34(2): 162–176. DOI: 10.19721/j.cnki.1001-7372.2021.02.006.
FAN W, MAO W, PANG Y T, et al. Reliability analysis of reinforced concrete column bridge piers subjected to vehicle collisions [J]. China Journal of Highway and Transport, 2021, 34(2): 162–176. DOI: 10.19721/j.cnki.1001-7372.2021.02.006.
|
[25] |
HAMMOUDI A, MOUSSACEB K, BELEBCHOUCHE C, et al. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates [J]. Construction and Building Materials, 2019, 209: 425–436. DOI: 10.1016/j.conbuildmat.2019.03.119.
|
[26] |
郭金龙, 潘爽, 付诗琦. 侧向冲击作用后圆中空夹层钢管混凝土长柱的竖向剩余承载性能研究[J]. 工程力学, 2024, DOI: 10.6052/j.issn.1000-4750.2023.02.0095.
GUO J L, PAN S, FU S Q. Study on the vertical residual bearing behaviors of circular concrete-filled double-skin steel tubular long columns after lateral impact [J]. Engineering Mechanics, 2024, DOI: 10.6052/j.issn.1000-4750.2023.02.0095.
|