Citation: | PAN Meilin, PENG Weiwen, LENG Chunjiang, QIU Jiulu, ZHONG Wei. Fast estimation of blast loading of complex structures based on Bayesian deep learning[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0191 |
[1] |
SMITH P D, ROSE T A. Blast wave propagation in city streets—an overview [J]. Progress in Structural Engineering and Materials, 2006, 8(1): 16–28. DOI: 10.1002/pse.209.
|
[2] |
RATCLIFF A, RIGBY S, CLARKE S, et al. A review of blast loading in the urban environment [J]. Applied Sciences, 2023, 13(9): 5349. DOI: 10.3390/app13095349.
|
[3] |
SHI Y C, LIU S Z, LI Z X, et al. Review on quick safety assessment of building structures in complex urban environment after extreme explosion events [J]. International Journal of Protective Structures, 2023, 14(3): 438–458. DOI: 10.1177/20414196221104146.
|
[4] |
PANNELL J J, PANOUTSOS G, COOKE S B, et al. Predicting specific impulse distributions for spherical explosives in the extreme near-field using a Gaussian function [J]. International Journal of Protective Structures, 2021, 12(4): 437–459. DOI: 10.1177/2041419621993492.
|
[5] |
REMENNIKOV A M, ROSE T A. Predicting the effectiveness of blast wall barriers using neural networks [J]. International Journal of Impact Engineering, 2007, 34(12): 1907–1923. DOI: 10.1016/j.ijimpeng.2006.11.003.
|
[6] |
REMENNIKOV A M, MENDIS P A. Prediction of airblast loads in complex environments using artificial neural networks [M]. Edinburgh: WIT Press, 2006: 269–78.
|
[7] |
DENNIS A A, PANNELL J J, SMYL D J, et al. Prediction of blast loading in an internal environment using artificial neural networks [J]. International Journal of Protective Structures, 2021, 12(3): 287–314. DOI: 10.1177/2041419620970570.
|
[8] |
FLOOD I, BEWICK B T, SALIM H A, et al. A neural network approach to modeling the effects of barrier walls on blast wave propagation PREPRINT [J]. Applied Research Associates Inc Tyndall Afb Fl, 2008: 0011.
|
[9] |
FLOOD I, BEWICK B T, DINAN R J, et al. Modeling blast wave propagation using artificial neural network methods [J]. Advanced Engineering Informatics, 2009, 23(4): 418–423. DOI: 10.1016/j.aei.2009.06.005.
|
[10] |
BEWICK B, FLOOD I, CHEN Z. A neural-network model-based engineering tool for blast wall protection of structures [J]. International Journal of Protective Structures, 2011, 2(2): 159–176. DOI: 10.1260/2041-4196.2.2.159.
|
[11] |
DENNIS A A, RIGBY S E. The Direction-encoded Neural Network: A machine learning approach to rapidly predict blast loading in obstructed environments [J]. International Journal of Protective Structures, 2024, 15(3): 455–483. DOI: 10.1177/20414196231177364.
|
[12] |
PANNELL J J, RIGBY S E, PANOUTSOS G. Physics-informed regularisation procedure in neural networks: An application in blast protection engineering [J]. International Journal of Protective Structures, 2022, 13(3): 555–578. DOI: 10.1177/20414196211073501.
|
[13] |
PANNELL J J, RIGBY S E, PANOUTSOS G. Application of transfer learning for the prediction of blast impulse [J]. International Journal of Protective Structures, 2023, 14(2): 242–262. DOI: 10.1177/20414196221096699.
|
[14] |
KANG M A, PARK C H. Prediction of peak pressure by blast wave propagation between buildings using a conditional 3D convolutional neural network [J]. IEEE Access, 2023, 11: 26114–26124. DOI: 10.1109/ACCESS.2023.3257345.
|
[15] |
HUANG Y, ZHU S J, CHEN S W. Deep learning-driven super-resolution reconstruction of two-dimensional explosion pressure fields [J]. Journal of Building Engineering, 2023, 78: 107620. DOI: 10.1016/j.jobe.2023.107620.
|
[16] |
LI Q L, WANG Y, SHAO Y D, et al. A comparative study on the most effective machine learning model for blast loading prediction: From GBDT to Transformer [J]. Engineering Structures, 2023, 276: 115310. DOI: 10.1016/j.engstruct.2022.115310.
|
[17] |
LI J D, LI Q L, HAO H, et al. Prediction of BLEVE blast loading using CFD and artificial neural network [J]. Process Safety and Environmental Protection, 2021, 149: 711–723. DOI: 10.1016/j.psep.2021.03.018.
|
[18] |
LI Q L, WANG Y, CHEN W S, et al. Machine learning prediction of BLEVE loading with graph neural networks [J]. Reliability Engineering & System Safety, 2024, 241: 109639. DOI: 10.1016/j.ress.2023.109639.
|
[19] |
LI Q L, WANG Y, LI L, et al. Prediction of BLEVE loads on structures using machine learning and CFD [J]. Process Safety and Environmental Protection, 2023, 171: 914–925. DOI: 10.1016/j.psep.2023.02.008.
|
[20] |
ZUO K J, YE Z Y, ZHANG W W, et al. Fast aerodynamics prediction of laminar airfoils based on deep attention network [J]. Physics of Fluids, 2023, 35(3): 037127. DOI: 10.1063/5.0140545.
|
[21] |
DOU Z H, GAO C Q, ZHANG W W, et al. Nonlinear aeroelastic prediction in transonic buffeting flow by deep neural network [J]. AIAA Journal, 2023, 61(6): 2412–2429. DOI: 10.2514/1.J061946.
|
[22] |
HU J W, DOU Z H, ZHANG W W. Fast fluid–structure interaction simulation method based on deep learning flow field modeling [J]. Physics of Fluids, 2024, 36(4): 045106. DOI: 10.1063/5.0200188.
|
[23] |
ZHANG Q, WANG X, YANG D G, et al. Data-driven prediction of aerodynamic noise of transonic buffeting over an airfoil [J]. Engineering Analysis with Boundary Elements, 2024, 163: 549–561. DOI: 10.1016/j.enganabound.2024.04.006.
|
[24] |
KOU J Q, ZHANG W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity [J]. Progress in Aerospace Sciences, 2021, 125: 100725. DOI: 10.1016/j.paerosci.2021.100725.
|
[25] |
VALGER S A, FEDOROVA N N, FEDOROV A V. Numerical simulation of blast action on civil structures in urban environment [C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 245(6): 062018. DOI: 10.1088/1757-899X/245/6/062018.
|
[26] |
聂源, 蒋建伟, 李梅. 球形装药动态爆炸冲击波超压场计算模型 [J]. 爆炸与冲击, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06.
NIE Y, JIANG J W, LI M. Overpressure calculation model of sphere charge blasting with moving velocity [J]. Explosion and Shock Waves, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06.
|
[27] |
WANG H, YEUNG D Y. Towards Bayesian deep learning: A framework and some existing methods [J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3395–3408. DOI: 10.1109/TKDE.2016.2606428.
|
[28] |
JOSPIN L V, LAGA H, BOUSSAID F, et al. Hands-on Bayesian neural networks—A tutorial for deep learning users [J]. IEEE Computational Intelligence Magazine, 2022, 17(2): 29–48. DOI: 10.1109/MCI.2022.3155327.
|
[29] |
ABDAR M, POURPANAH F, HUSSAIN S, et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J]. Information Fusion, 2021, 76: 243–297. DOI: 10.1016/j.inffus.2021.05.008.
|
[30] |
PSAROS A F, MENG X H, ZOU Z R, et al. Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons [J]. Journal of Computational Physics, 2023, 477: 111902. DOI: 10.1016/j.jcp.2022.111902.
|