| Citation: | JIAO Jixuan, BAI Zhiling, DUAN Zhuoping, ZHANG Liansheng, HUANG Fenglei. A buring-crack network theoretical model for reaction evolution of explosives considering the inertial confinement effect of the shell motion[J]. Explosion And Shock Waves, 2025, 45(3): 032101. doi: 10.11883/bzycj-2024-0224 | 
	                | [1] | 
					 DICKSON P M, ASAY B W, HENSOPM B F, et al. Thermal cook-off response of confined PBX 9501 [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460(2052): 3447–3455. DOI:  10.1098/rspa.2004.1348. 
						
					 | 
			
| [2] | 
					 PARKER G R, PETERSON P D, ASAY B, et al. Examination of morphological changes that affect gas permeation through thermally damaged explosives [J]. Propellants Explosives Pyrotechnics, 2010, 29(5): 274–281. DOI:  10.1002/prep.200400057. 
						
					 | 
			
| [3] | 
					 HOLMES M D, PARKER G R, HEATWOLE E M, et al. Center-ignited spherical-mass explosion (CISME), FY 2018 report: LA-UR-18-29651 [R]. USA: Los Alamos National Laboratory, 2018. 
						
					 | 
			
| [4] | 
					 HOLMES M D, PARKER G R, BROILO R M, et al. Fracture effects on explosive response (FEER), FY 2018 report: LA-UR-18-29694 [R]. USA: Los Alamos National Laboratory, 2018. 
						
					 | 
			
| [5] | 
					 WANG S, LIANG W, LU F Y, et al. Simulation of convective combustion reactions in PBX based on DEM-CPM [J]. AIP Advances, 2021, 11(8): 085326. DOI:  10.1063/5.0062549. 
						
					 | 
			
| [6] | 
					 姚奎光, 王淑娟, 樊星, 等. 不同机械约束下压装PBX炸药反应演化行为 [J]. 兵工学报, 2022, 43(8): 1772–1778. DOI:  10.12382/bgxb.2021.0445. 
					YAO K G, WANG S J, FAN X, et al. Reaction evolution behaviors of pressed plastic-bonded explosive (PBX) under different mechanical confinement conditions [J]. Acta Armamentarii, 2022, 43(8): 1772–1778. DOI:  10.12382/bgxb.2021.0445. 
						
					 | 
			
| [7] | 
					 TRINGE J W, MOLITORIS J D, SMILOWITZ L, et al. Time-sequenced X-ray observation of a thermal explosion [J]. American Institute of Physics, 2009, 1195: 424–427. DOI:  10.1063/1.3295164. 
						
					 | 
			
| [8] | 
					 SMILOWITZ L. The evolution of solid density within a thermal explosion Ⅱ. dynamic proton radiography of cracking and solid consumption by burning [J]. Journal of Applied Physics, 2012, 111(10): 617–1214. DOI:  10.1063/1.4711072. 
						
					 | 
			
| [9] | 
					 HILL L G. Burning crack networks and combustion bootstrapping in cookoff explosions [C]//Conference of the American Physical-Society Topical Group on Shock Compression of Condensed Matter. Baltimore, MD: American Institute of Physics, 2006. DOI: 10.1063/1.2263377. 
						
					 | 
			
| [10] | 
					 段卓平, 白志玲, 白孟璟, 等. 强约束固体炸药燃烧裂纹网络反应演化模型 [J]. 兵工学报, 2021, 42(11): 2291–2299. DOI:  10.3969/j.issn.1000-1093.2021.11.001. 
					DUAN Z P, BAI Z L, BAI M J, et al. Burning-crack networks model for combustion reaction growth of solid explosives with strong confinement [J]. Acta Armamentarii, 2021, 42(11): 2291–2299. DOI:  10.3969/j.issn.1000-1093.2021.11.001. 
						
					 | 
			
| [11] | 
					 DUAN Z P, BAI M J, BAI Z L, et al. Combustion crack-network reaction evolution model for highly-confined explosives [J]. Defence Technology, 2023, 26: 54–67. DOI:  10.1016/j.dt.2022.06.011. 
						
					 | 
			
| [12] | 
					 白志玲, 段卓平, 李治, 等. 热刺激约束DNAN基不敏感熔铸炸药装药点火后反应演化调控模型 [J]. 含能材料, 2023, 31(10): 1004–1012. DOI:  10.11943/cjem2023160. 
					BAI Z L, DUAN Z P, LI Z, et al. Regulation model for reaction evolution of confined DNAN-based cast explosives after ignition under thermal stimulation [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1004–1012. DOI:  10.11943/cjem2023160. 
						
					 | 
			
| [13] | 
					 胡海波, 傅华, 李涛, 等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展 [J]. 爆炸与冲击, 2020, 40(1): 011401. DOI:  10.11883/bzycj-2019-0346. 
					HU H B, FU H, LI T, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011401. DOI:  10.11883/bzycj-2019-0346. 
						
					 | 
			
| [14] | 
					 李涛, 胡海波, 尚海林, 等. 强约束球形装药反应裂纹传播和反应烈度表征实验 [J]. 爆炸与冲击, 2020, 40(1): 011402. DOI:  10.11883/bzycj-2019-0348. 
					LI T, HU H B, SHANG H L, et al. Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011402. DOI:  10.11883/bzycj-2019-0348. 
						
					 | 
			
| [15] | 
					 BERGHOUT H L, SON S F, ASAY B W, et al. Convective burning in gaps of PBX 9501 [J]. Proceedings of the Combustion Institute, 2000, 28(1): 911–917. DOI:  10.1016/S0082-0784(00)80297-0. 
						
					 | 
			
| [16] | 
					 ASAY B W. Shock wave science and technology reference library, vol. 5: non-shock initiation of explosives [M]. Heidelberg, Baden-Württemberg, Germany: Springer, 2010: 245–401. 
						
					 | 
			
| [17] | 
					 陈明详. 弹塑性力学 [M]. 2版. 北京: 科学出版社, 2021: 297–302. 
					CHEN M X. Elasticity and plasticity [M]. 2nd ed. Beijing: Science Press, 2021: 297–302. 
						
					 | 
			
| [18] | 
					 奥尔连科. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011: 797–803. 
					
					 | 
			
| [19] | 
					 赵衡阳. 气体和粉尘爆炸原理 [M]. 北京: 北京理工大学出版社, 1996: 186–196. 
					
					 | 
			
| [20] | 
					 ZHANG W Y, DENG X Y, CHEN S J, et al. Molecular dynamics simulation of thermal sensitivity, thermal expansion and mechanical properties of PBX9501 [J]. 2016, 39(3): 32–36. DOI:  10.14077/j.issn.1007-7812.2016.03.006. 
						
					 | 
			
| [21] | 
					 祝明水, 龙新平, 蒋小华, 等. 不同粒径RDX的燃烧特性研究 [J]. 含能材料, 2004, 12(1): 40–42. DOI:  10.3969/j.issn.1006-9941.2004.01.012. 
					ZHU M S, LONG X P, JIANG X H, et al. Study on the combustion characteristics of RDX with different particle sizes [J]. Chinese Journal of Energetic Materials, 2004, 12(1): 40–42. DOI:  10.3969/j.issn.1006-9941.2004.01.012. 
						
					 | 
			
| [22] | 
					 JACKSOPN S I, HILL L G. Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2307–2313. DOI:  10.1016/j.proci.2008.05.089. 
						
					 | 
			
| [23] | 
					 GREBENKIN K. Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB) [J]. Combustion, Explosion, and Shock Waves, 2009, 45(1): 78–87. DOI:  10.1007/s10573-009-0011-y. 
						
					 | 
			
| [24] | 
					 范钦珊, 殷雅俊, 唐靖林, 等. 材料力学 [M]. 3版. 北京: 清华大学出版社, 2014: 42–49. 
					
					 | 
			
| [25] | 
					 张震宇, 田占东, 陈军, 等. 爆轰物理 [M]. 长沙: 国防科技大学出版社, 2016: 68–73. 
					
					 |