Volume 44 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
ZHANG Dianyuan, YU Chen, HAO Wenyong, LI Yuan, HOU Bing, SUO Tao. Injury properties of porcine lung under blast load[J]. Explosion And Shock Waves, 2024, 44(12): 121433. doi: 10.11883/bzycj-2024-0262
Citation: ZHANG Dianyuan, YU Chen, HAO Wenyong, LI Yuan, HOU Bing, SUO Tao. Injury properties of porcine lung under blast load[J]. Explosion And Shock Waves, 2024, 44(12): 121433. doi: 10.11883/bzycj-2024-0262

Injury properties of porcine lung under blast load

doi: 10.11883/bzycj-2024-0262
  • Received Date: 2024-08-06
  • Rev Recd Date: 2024-10-18
  • Available Online: 2024-11-05
  • Publish Date: 2024-12-01
  • In order to study the mechanical response and injury characteristics of living lungs under the action of blast shock waves, this study first established a finite element model of the chest of a small pig and used a newly developed PVDF (polyvinylidene fluoride) flexible pressure sensor to test the surface pressure of animals in shock tube experiments, verifying the accuracy of the finite element model. Secondly, the validated model was used to study the characteristics of lung injury of pigs at different blast distances, analyzing the lung injury location and severity under different intensities of shock waves. Moreover, the relation between the peak pressure on the surface of the chest and the grade of lung injury was established. Finally, blast tests were performed to obtain the lung injury of pigs as well as the chest surface pressure histories at different blast distances, which can be used to verify the correctness of the established relation.
  • loading
  • [1]
    HUGHES S M, BORDERS III C W, ADEN J K, et al. Long-term outcomes of thoracic trauma in U. S. service members involved in combat operations [J]. Military Medicine, 2020, 185(11/12): 131–136. DOI: 10.1093/milmed/usaa165.
    [2]
    SALEM M H, BUX G M K, HUDEEL A. War thoracic wounds among civilians casualties in Aden during the 2015 [J]. Electronic Journal of University of Aden for Basic and Applied Sciences, 2020, 1(3): 159–166. DOI: 10.47372/ejua-ba.2020.3.39.
    [3]
    ZHANG B. Blast lung injury [M]//WANG Z G, JIANG J X. Explosive Blast Injuries: Principles and Practices. Singapore: Springer, 2023: 295–300. DOI: 10.1007/978-981-19-2856-7_19.
    [4]
    CERNAK I, SAVIC J, IGNJATOVIC D, et al. Blast injury from explosive munitions [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1999, 47(1): 96–103. DOI: 10.1097/00005373-199907000-00021.
    [5]
    SCOTT T E, KIRKMAN E, HAQUE M, et al. Primary blast lung injury: a review [J]. British Journal of Anaesthesia, 2017, 118(3): 311–316. DOI: 10.1093/bja/aew385.
    [6]
    SMITH J E. The epidemiology of blast lung injury during recent military conflicts: a retrospective database review of cases presenting to deployed military hospitals, 2003–2009 [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1562): 291–294. DOI: 10.1098/rstb.2010.0251.
    [7]
    TELAND J A. Review of blast injury prediction models: FFI-rapport 2012/00539 [R]. Norway: Norwegian Defence Research Establishment (FFI), 2012.
    [8]
    COOPER G J, TOWNEND D J, CATER S R, et al. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials [J]. Journal of Biomechanics, 1991, 24(5): 273–285. DOI: 10.1016/0021-9290(91)90346-O.
    [9]
    唐献述, 王树民, 龙源, 等. 爆炸空气冲击波对动物伤害效应试验研究 [J]. 工程爆破, 2012, 18(2): 104–106, 96. DOI: 10.3969/j.issn.1006-7051.2012.02.028.

    TANG X S, WANG S M, LONG Y, et al. Experimental study on the effect of explosion air shockwave on the animal injury [J]. Engineering Blasting, 2012, 18(2): 104–106, 96. DOI: 10.3969/j.issn.1006-7051.2012.02.028.
    [10]
    王海宾, 赵英虎, 高莉, 等. 甲烷爆炸冲击波作用下密闭管道内动物损伤效应试验研究 [J]. 兵工学报, 2018, 39(8): 1639–1647. DOI: 10.3969/j.issn.1000-1093.2018.08.022.

    WANG H B, ZHAO Y H, GAO L, et al. Experimental investigation into the damage effect of methane explosion shock wave on animals in enclosed pipeline [J]. Acta Armamentarii, 2018, 39(8): 1639–1647. DOI: 10.3969/j.issn.1000-1093.2018.08.022.
    [11]
    VASSOUT P, FRANKE R, PARMENTIER G, et al. Mesures de pression et d’accélérations intracorporelles chez le porc exposé à des ondes de choc fortes en champ libre [R]. France: French-German Research Institute of Saint Louis, 1986: 86.
    [12]
    陈海斌, 王正国, 杨志焕, 等. 冲击波传播的三个时段模拟实验中动物肺的损伤 [J]. 爆炸与冲击, 2000, 20(3): 264–269. DOI: 10.11883/1001-1455(2000)03-0264-6.

    CHEN H B, WANG Z G, YANG Z H, et al. Injury of animal lungs in the experiments to simulate the three phases of shock wave propagation [J]. Explosion and Shock Waves, 2000, 20(3): 264–269. DOI: 10.11883/1001-1455(2000)03-0264-6.
    [13]
    陈海斌, 王正国. 爆炸性减压对兔肺的损伤作用 [J]. 中华创伤杂志, 2000, 16(2): 109–111. DOI: 10.3760/j:issn:1001-8050.2000.02.016.

    CHEN H B, WANG Z G. Injury action on rabbit lung by explosive decompression [J]. Chinese Journal of Trauma, 2000, 16(2): 109–111. DOI: 10.3760/j:issn:1001-8050.2000.02.016.
    [14]
    段维勋. 胸部爆炸伤动物模型的建立及伤情特点分析的实验研究 [D]. 西安: 第四军医大学, 2002: 1–64.

    DUAN W X. Experimental researches on establishment of animal model of thoracic explosive injury and analysis of wound characteristics [D]. Xi’an: Air Force Medical University, 2002: 1–64.
    [15]
    王峰, 杨志焕, 朱佩芳, 等. 高原冲击伤伤情特点的实验研究 [J]. 创伤外科杂志, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.

    WANG F, YANG Z H, ZHU P F, et al. Experimental study on characteristics of blast injury at high altitude [J]. Journal of Traumatic Surgery, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.
    [16]
    袁丹凤, 杨傲, 麻超, 等. 冲击波强度与幼年大鼠肺冲击伤程度的量效关系 [J]. 中国医学物理学杂志, 2021, 38(6): 780–784. DOI: 10.3969/j.issn.1005-202X.2021.06.022.

    YUAN D F, YANG A, MA C, et al. Dose-effect relationship between shock wave intensity and blast lung injury in juvenile rats [J]. Chinese Journal of Medical Physics, 2021, 38(6): 780–784. DOI: 10.3969/j.issn.1005-202X.2021.06.022.
    [17]
    张良. 准静态撞击下猪胸腔内应力分布及其三维重现与肺损伤 [D]. 重庆: 中国人民解放军陆军军医大学, 2005: 1–56.

    ZHANG L. Distribution and 3-D reconstruction of intrathoracic stress in the swine chest subjected to impact [D]. Chongqing: Army Medical University, 2005: 1–56.
    [18]
    杨春霞. 羊肺脏有限元模型的建立及其在冲击波作用下的仿真分析 [D]. 重庆: 重庆大学, 2010: 1–60.

    YANG C X. Establishmen of finite element model of sheep lung and finite-element simulation of blast wave [D]. Chongqing: Chongqing University, 2010: 1–60.
    [19]
    MORDAKA J, MEIJER R, VAN ROOIJ L, et al. Validation of a finite element human model for prediction of rib fractures: SAE technical paper 2007-01-1161 [R]. TNO Science and Industry: SAE, 2007.
    [20]
    KIMPARA H, LEE J B, YANG K H, et al. Development of a three-dimensional finite element chest model for the 5th percentile female [R]. Wayne State University, Toyota Central R & D Labs., Inc.: SAE, 2005.
    [21]
    SHIN J, UNTAROIU C, LESSLEY D, et al. Thoracic response to shoulder belt loading: investigation of chest stiffness and longitudinal strain pattern of ribs: SAE technical paper 2009-01-0384 [R]. Center for Applied Biomechanics, University of Virginia: SAE, 2009. DOI: 10.4271/2009-01-0384.
    [22]
    IWAMOTO M, NAKAHIRA Y, TAMURA A, et al. Development of advanced human models in THUMS [C]//Proceedings of the 6th European LS-DYNA Users’ Conference. Nagakute City: Toyota Central R&D Labs., Inc., 2007.
    [23]
    YANG K H, HU J W, WHITE N A, et al. Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp car crash conference [C]//Proceedings of the 50th Stapp Car Crash Conference. Dearborn, Michigan: SAE, 2006: 429–490.
    [24]
    RUAN J, EL-JAWAHRI R, CHAI L, et al. Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model [C]//Proceedings of the 47th Stapp Car Crash Conference. San Diego: SAE, 2003.
    [25]
    ROBIN S. HUMOS: human model for safety: a joint effort towards the development of refined human-like car occupant models [C]//Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles. Amsterdam: SAE, 2001.
    [26]
    RUAN J S, EL-JAWAHRI R, BARBAT S, et al. Biomechanical analysis of human abdominal impact responses and injuries through finite element simulations of a full human body model [C]//Proceedings of the 49th Stapp Car Crash Conference. National Library of Medicine: SAE, 2005.
    [27]
    范志强, 常瀚林, 何天明, 等. 基于PVDF复合压电效应的低强度冲击波柔性测量 [J]. 爆炸与冲击, 2023, 43(1): 013102. DOI: 10.11883/bzycj-2022-0152.

    FAN Z Q, CHANG H L, HE T M, et al. Flexible measurement of low-intensity shock wave based on coupling piezoelectric effect of PVDF [J]. Explosion and Shock Waves, 2023, 43(1): 013102. DOI: 10.11883/bzycj-2022-0152.
    [28]
    GREER A. Numerical modeling for the prediction of primary blast injury to the lung [D]. Waterloo: University of Waterloo, 2007: 117–141.
    [29]
    卢芳云, 蒋邦海, 李翔宇, 等. 武器战斗部投射与毁伤 [M]. 北京: 科学出版社, 2013: 1–316.
    [30]
    AXELSSON H, YELVERTON J T. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1996, 40(3S): 31S–37S. DOI: 10.1097/00005373-199603001-00006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views (77) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return