• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
CUI Peng, LUO Gang, LIU Le, CAO Xinxin, LI Bangxiang, MEI Xuefeng. Experimental study on crushing characteristics and energy absorption effect of silica sand under dynamic loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0309
Citation: CUI Peng, LUO Gang, LIU Le, CAO Xinxin, LI Bangxiang, MEI Xuefeng. Experimental study on crushing characteristics and energy absorption effect of silica sand under dynamic loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0309

Experimental study on crushing characteristics and energy absorption effect of silica sand under dynamic loading

doi: 10.11883/bzycj-2024-0309
  • Received Date: 2024-08-26
  • Rev Recd Date: 2024-11-12
  • Available Online: 2024-11-12
  • This study investigates the dynamic response characteristics of silica sand under dynamic loading, employing a modified split Hopkinson pressure bar (SHPB) to gain insights into its crushing behavior and energy absorption properties. Four distinct grain size (2.5–5.0 mm, 1.25–2.5 mm, 0.6–1.25 mm, and <0.3 mm) were analyzed, with results demonstrating that the dynamic stress-strain behavior of silica sand is affected by both grain size and strain rate. The deformation process of silica sand is categorized into three stages: elastic, yielding, and plastic. Plastic compaction is dominant during the yielding stage, whereas crushing compaction prevails in the plastic stage. The relative breakage of particles shows a positive correlation with both strain rate and effective particle size, and an inverse correlation with fractal dimension. The impact of particle size on energy absorption efficiency is influenced by factors such as mineral composition, particle size, and differentiation degree. Under identical stress levels, larger particle sizes demonstrate greater energy absorption efficiency; similarly, under identical loading strain rates, larger particles exhibit lower peak stress. To improve sand's energy absorption efficiency and reduce required loading levels, sand with larger particle sizes is recommended.
  • loading
  • [1]
    于潇, 陈力, 方秦. 珊瑚砂中应力波衰减规律的实验研究 [J]. 岩石力学与工程学报, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.

    YU X, CHEN L, FANG Q. Experimental study on the attenuation of stress wave in coral sand [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.
    [2]
    杨阳, 张春会, 崔恩杰, 等. 单颗粒与单粒径钙质砂破碎特性及其关联关系研究 [J]. 岩石力学与工程学报, 2022, 41(S2): 3410–3418. DOI: 10.13722/j.cnki.jrme.2021.1148.

    YANG Y, ZHANG C H, CUI E J, et al. The crushing characteristics of single particle and uniformly-graded sample of carbonate sand and their association relationship [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3410–3418. DOI: 10.13722/j.cnki.jrme.2021.1148.
    [3]
    周辉, 任辉启, 吴祥云, 等. 成层式防护结构中分散层研究综述 [J]. 爆炸与冲击, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280.

    ZHOU H, REN H Q, WU X Y, et al. A review of sacrificial claddings in multilayer protective structure [J]. Explosion and Shock Waves, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280.
    [4]
    ZHAO D B, YI W J, KUNNATH S K. Numerical simulation and shear resistance of reinforced concrete beams under impact [J]. Engineering Structures, 2018, 166: 387–401. DOI: 10.1016/j.engstruct.2018.03.072.
    [5]
    LIN Y, YAO W, JAFARI M, et al. Quantification of the dynamic compressive response of two Ottawa sands [J]. Experimental Mechanics, 2017, 57(9): 1371–1382. DOI: 10.1007/s11340-017-0304-0.
    [6]
    SONG B, CHEN W N, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003.
    [7]
    吴建利, 胡卸文, 梅雪峰, 等. 落石冲击混凝土板与缓冲层组合结构的动力响应 [J]. 水文地质工程地质, 2021, 48(1): 78–87. DOI: 10.16030/j.cnki.issn.1000-3665.202004029.

    WU J L, HU X W, MEI X F, et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact [J]. Hydrogeology & Engineering Geology, 2021, 48(1): 78–87. DOI: 10.16030/j.cnki.issn.1000-3665.202004029.
    [8]
    吕华, 王仲琦. 密实填充砂墙对冲击波消波吸能的试验研究 [J]. 中国安全科学学报, 2016, 26(10): 64–69. DOI: 10.16265/j.cnki.issn1003-3033.2016.10.012.

    LYU H, WANG Z Q. Experimental study of shock attenuation by dense packed sand wall [J]. China Safety Science Journal, 2016, 26(10): 64–69. DOI: 10.16265/j.cnki.issn1003-3033.2016.10.012.
    [9]
    蔡改贫, 郭进山, 夏刘洋. 基于Weibull分布的Bond冲击破碎粒度分布特征 [J]. 金属矿山, 2016, 45(4): 118–121. DOI: 10.3969/j.issn.1001-1250.2016.04.024.

    CAI G P, GUO J S, XIA L Y. Particle size distribution characteristics of Bond impact based on Weibull distribution [J]. Metal Mine, 2016, 45(4): 118–121. DOI: 10.3969/j.issn.1001-1250.2016.04.024.
    [10]
    潘亚豪, 宗周红, 钱海敏, 等. 钙质砂介质中爆炸波传播规律的试验研究 [J]. 爆炸与冲击, 2023, 43(5): 053201. DOI: 10.11883/bzycj-2022-0117.

    PAN Y H, ZONG Z H, QIAN H M, et al. Experimental study on blast wave propagation in calcareous sand [J]. Explosion and Shock Waves, 2023, 43(5): 053201. DOI: 10.11883/bzycj-2022-0117.
    [11]
    YU X, CHEN L, FANG Q, et al. Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave [J]. International Journal of Impact Engineering, 2019, 125: 63–82. DOI: 10.1016/j.ijimpeng.2018.11.004.
    [12]
    董凯, 任辉启, 阮文俊, 等. 爆炸冲击下珊瑚砂动态本构模型 [J]. 爆炸与冲击, 2021, 41(4): 043101. DOI: 10.11883/bzycj-2020-0172.

    DONG K, REN H Q, RUAN W J, et al. Dynamic constitutive model of coral sand under blast loading [J]. Explosion and Shock Waves, 2021, 41(4): 043101. DOI: 10.11883/bzycj-2020-0172.
    [13]
    LUO H Y, COOPER W L, LU H B. Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates [J]. International Journal of Impact Engineering, 2014, 65: 40–55. DOI: 10.1016/j.ijimpeng.2013.11.001.
    [14]
    OUYANG H R, DAI G L, QIN W, et al. Dynamic behaviors of calcareous sand under repeated one-dimensional impacts [J]. Soil Dynamics and Earthquake Engineering, 2021, 150: 106891. DOI: 10.1016/J.SOILDYN.2021.106891.
    [15]
    LV Y R, WANG Y, ZUO D J. Effects of particle size on dynamic constitutive relation and energy absorption of calcareous sand [J]. Powder Technology, 2019, 356: 21–30. DOI: 10.1016/j.powtec.2019.07.088.
    [16]
    XU D S, SHEN G, LIU Q M, et al. Dynamic mechanical response and particle breakage characteristics of calcareous sand [J]. Soil Dynamics and Earthquake Engineering, 2024, 181: 108653. DOI: 10.1016/j.soildyn.2024.108653.
    [17]
    XIAO Y, YUAN Z X, CHU J, et al. Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression [J]. Acta Geotechnica, 2019, 14(6): 1741–1755. DOI: 10.1007/s11440-019-00790-1.
    [18]
    吕亚茹, 吴琳, 王媛, 等. 玻璃球宏细观冲击特性的SHPB试验和耦合数值模拟研究 [J]. 工程力学, 2023, 40(6): 245–256. DOI: 10.6052/j.issn.1000-4750.2021.11.0857.

    LYU Y R, WU L WANG Y, et al. Macro and micro quantitative study on impact behavior of glass beadsby SHPB tests and FEM-DEM coupling analysis [J]. Engineering Mechanics, 2023, 40(6): 245–256. DOI: 10.6052/j.issn.1000-4750.2021.11.0857.
    [19]
    陈榕, 武智勇, 郝冬雪, 等. 高应力下石英砂三轴剪切颗粒破碎演化规律及影响 [J]. 岩土工程学报, 2023, 45(8): 1713–1722. DOI: 10.11779/CJGE20220647.

    CHEN R, WU Z Y, HAO D X, et al. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures [J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713–1722. DOI: 10.11779/CJGE20220647.
    [20]
    魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究 [J]. 振动与冲击, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.

    WEI J Q, WANG M Y, QIU Y Y, et al. Impact compressive response of calcareous sand [J]. Journal of Vibration and Shock, 2018, 37(24): 7–12. DOI: 10.13465/j.cnki.jvs.2018.24.002.
    [21]
    王博, 吕果, 李江. 考虑粒径对砂土宏细观剪切性质的试验研究 [J]. 岩土工程技术, 2023, 37(5): 618–622. DOI: 10.3969/j.issn.1007-2993.2023.05.017.

    WANG B, LV G, LI J. Experimental study on micro-macro shear properties of sand considering particle size [J]. Geotechnical Engineering Technique, 2023, 37(5): 618–622. DOI: 10.3969/j.issn.1007-2993.2023.05.017.
    [22]
    孟敏强, 袁正鑫, 蒋翔. 钙质砂-石英砂单颗粒破碎-强度-尺寸效应试验研究 [J]. 中国科学: 技术科学, 2022, 52(7): 1035–1047. DOI: 10.1360/SST-2021-0241.

    MENG M Q, YUAN Z X, JIANG X. Experimental study of the single-particle crushing-strength-size effect of calcareous sand-quartz sand [J]. Scientia Sinica Technologica, 2022, 52(7): 1035–1047. DOI: 10.1360/SST-2021-0241.
    [23]
    张季如, 陈敬鑫, 王磊, 等. 三轴剪切过程中排水条件对钙质砂颗粒破碎、变形和强度特性的影响 [J]. 岩土力学, 2024, 45(2): 375–384. DOI: 10.16285/j.rsm.2023.0243.

    ZHANG J R, CHEN J X, WANG L, et al. Effect of drainage conditions during triaxial shearing on particle breakage, deformation, and strength properties of calcareous sand [J]. Rock and Soil Mechanics, 2024, 45(2): 375–384. DOI: 10.16285/j.rsm.2023.0243.
    [24]
    YU X, REN W J, ZHOU B K, et al. Experimental study on the mechanical behavior and energy absorption capacity of coral sand at high strain rates [J]. Ocean Engineering, 2024, 291: 116343. DOI: 10.1016/j.oceaneng.2023.116343.
    [25]
    卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013.

    LU F Y, CHEN R, LIN Y L, et al. Hopkinson bar techniques [M]. Beijing: Science Press, 2013.
    [26]
    李胜林, 刘殿书, 李祥龙, 等. ϕ75mm分离式霍普金森压杆试件长度效应的试验研究 [J]. 中国矿业大学学报, 2010, 39(1): 93–97.

    LI S L, LIU D S, LI X L, et al. The effect of specimen length in ϕ75 mm split Hopkinson pressure bar experiment [J]. Journal of China University of Mining & Technology, 2010, 39(1): 93–97.
    [27]
    HARDIN B O. Crushing of soil particles [J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192. DOI: 10.1061/(ASCE)0733-9410(1985)111:10(1177.
    [28]
    ZHANG J M, DUAN M D, WANG D L, et al. Particle strength of calcareous sand in Nansha islands, south China sea [J]. Advances in Civil Engineering Materials, 2019, 8(1): 355–364. DOI: 10.1520/ACEM20180145.
    [29]
    KUANG D M, LONG Z L, GUO R Q, et al. Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles [J]. Marine Georesources & Geotechnology, 2021, 39(5): 543–553. DOI: 10.1080/1064119X.2020.1725194.
    [30]
    YANG J, LIU X. Shear wave velocity and stiffness of sand: the role of non-plastic fines [J]. Géotechnique, 2016, 66(6): 500–514. DOI: 10.1680/jgeot.15.p.205.
    [31]
    SHARMA S S, FAHEY M. Deformation characteristics of two cemented calcareous soils [J]. Canadian Geotechnical Journal, 2004, 41(6): 1139–1151. DOI: 10.1139/T04-066.
    [32]
    彭宇, 丁选明, 肖杨, 等. 基于染色标定与图像颗粒分割的钙质砂颗粒破碎特性研究 [J]. 岩土力学, 2019, 40(7): 2663–2672. DOI: 10.16285/j.rsm.2018.0689.

    PENG Y, DING X M, XIAO Y, et al. Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method [J]. Rock and Soil Mechanics, 2019, 40(7): 2663–2672. DOI: 10.16285/j.rsm.2018.0689.
    [33]
    EINAV I. Breakage mechanics—Part I: theory [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274–1297. DOI: 10.1016/j.jmps.2006.11.003.
    [34]
    PETERS J F, MUTHUSWAMY M, WIBOWO J, et al. Characterization of force chains in granular material [J]. Physical Review E, 2005, 72(4): 041307. DOI: 10.1103/PhysRevE.72.041307.
    [35]
    SADREKARIMI A, OLSON S M. Particle damage observed in ring shear tests on sands [J]. Canadian Geotechnical Journal, 2010, 47(5): 497–515. DOI: 10.1139/T09-117.
    [36]
    谢磊, 李庆华, 徐世烺. 超高韧性水泥基复合材料多次冲击压缩性能及本构关系 [J]. 工程力学, 2021, 38(12): 158–171. DOI: 10.6052/j.issn.1000-4750.2020.11.0860.

    XIE L, LI Q H, XU S L. Multiple impact compressive properties and constitutive model of ultra-high toughness cementitious composites [J]. Engineering Mechanics, 2021, 38(12): 158–171. DOI: 10.6052/j.issn.1000-4750.2020.11.0860.
    [37]
    MILTZ J, RAMON O. Energy absorption characteristics of polymeric foams used as cushioning materials [J]. Polymer Engineering and Science, 1990, 30(2): 129–133. DOI: 10.1002/pen.760300210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(29)

    Article Metrics

    Article views (166) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return