| Citation: | CAI Zhicheng, XU Zejian, FAN Changzeng, WU Gang, HUANG Fenglei. A new test method for mode I dynamic fracture toughness of ceramic materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0324 |
| [1] |
余毅磊, 蒋招绣, 王晓东, 等. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究 [J]. 爆炸与冲击, 2021, 41(11): 113301. DOI: 10.11883/bzycj-2021-0134.
YU Y L, JIANG Z X, WANG X D, et al. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration [J]. Explosion and Shock Waves, 2021, 41(11): 113301. DOI: 10.11883/bzycj-2021-0134.
|
| [2] |
余毅磊, 王晓东, 任文科, 等. 三层组合陶瓷复合装甲的抗侵彻性能及其损伤机制 [J]. 兵工学报, 2024, 45(1): 44–57. DOI: 10.12382/bgxb.2022.0319.
YU Y L, WANG X D, REN W K, et al. Anti-penetration performance and damage mechanism of three-layer composite ceramic armor [J]. Acta Armamentarii, 2024, 45(1): 44–57. DOI: 10.12382/bgxb.2022.0319.
|
| [3] |
武一丁, 王晓东, 余毅磊, 等. 纤维背板结构对B4C陶瓷复合装甲抗侵彻破碎特性的影响 [J]. 爆炸与冲击, 2023, 43(9): 091411. DOI: 10.11883/bzycj-2023-0133.
WU Y D, WANG X D, YU Y L, et al. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor [J]. Explosion and Shock Waves, 2023, 43(9): 091411. DOI: 10.11883/bzycj-2023-0133.
|
| [4] |
COMMINS T, GRAHAM A, SIVIOUR C R. Influence of surface preparation and polymer backing properties on the quasi-static and impact response of ceramic faced 1D armour systems [J]. International Journal of Impact Engineering, 2023, 180: 104708. DOI: 10.1016/j.ijimpeng.2023.104708.
|
| [5] |
马铭辉, 武一丁, 王晓东, 等. 多孔钛合金夹芯层陶瓷/UHMWPE复合结构的抗侵彻性能 [J]. 爆炸与冲击, 2024, 44(4): 041001. DOI: 10.11883/bzycj-2023-0375.
MA M H, WU Y D, WANG X D, et al. Penetration resistance of ceramic/UHMWPE composite structures with porous titanium alloy sandwich layer [J]. Explosion and Shock Waves, 2024, 44(4): 041001. DOI: 10.11883/bzycj-2023-0375.
|
| [6] |
谢雨珊, 陆建华, 徐松林, 等. Mo-ZrC梯度金属陶瓷的冲击响应行为 [J]. 爆炸与冲击, 2023, 43(3): 033101. DOI: 10.11883/bzycj-2022-0374.
XIE Y S, LU J H, XU S L, et al. On impact properties of Mo-ZrC gradient metal ceramics [J]. Explosion and Shock Waves, 2023, 43(3): 033101. DOI: 10.11883/bzycj-2022-0374.
|
| [7] |
HUANG C Y, CHEN Y L. Effect of mechanical properties on the ballistic resistance capability of Al2O3-ZrO2 functionally graded materials [J]. Ceramics International, 2016, 42(11): 12946–12955. DOI: 10.1016/j.ceramint.2016.05.067.
|
| [8] |
牛欢欢, 闫晓鹏, 罗浩舜, 等. 不同应变率下蓝宝石透明陶瓷玻璃的力学响应 [J]. 爆炸与冲击, 2022, 42(7): 073105. DOI: 10.11883/bzycj-2021-0434.
NIU H H, YAN X P, LUO H S, et al. Mechanical response of sapphire transparent ceramic glass at different strain rates [J]. Explosion and Shock Waves, 2022, 42(7): 073105. DOI: 10.11883/bzycj-2021-0434.
|
| [9] |
党泉勇, 葛彦鑫, 高玉波. 冲击加载下Al2O3/SiC复合陶瓷的动态力学行为 [J]. 兵工学报, 2022, 43(1): 175–180. DOI: 10.3969/j.issn.1000-1093.2022.01.019.
DANG Q Y, GE Y X, GAO Y B. Dynamic mechanical properties of Al2O3/SiC composite ceramic subjected to impact loading [J]. Acta Armamentarii, 2022, 43(1): 175–180. DOI: 10.3969/j.issn.1000-1093.2022.01.019.
|
| [10] |
AKELLA K. Studies for improved damage tolerance of ceramics against ballistic impact using layers [J]. Procedia Engineering, 2017, 173: 244–250. DOI: 10.1016/j.proeng.2016.12.006.
|
| [11] |
BAO J W, WANG Y W, CHENG X W, et al. Ballistic properties of silicon carbide ceramic under weak support conditions [J]. Journal of Materials Research and Technology, 2024, 28: 1764–1773. DOI: 10.1016/j.jmrt.2023.12.035.
|
| [12] |
何泽夏, 路民旭, 郑修麟, 等. 陶瓷材料裂纹制备及其在KIC测试中的应用 [J]. 兵器材料科学与工程, 1993, 16(2): 57–60. DOI: 10.14024/j.cnki.1004-244x.1993.02.014.
|
| [13] |
王学成, 金志浩, 李光新, 等. 双扭法及其在脆性材料力学性能评定中的应用 [J]. 材料科学进展, 1989, 3(5): 436–441.
WANG X C, JIN Z H, LI G X, et al. Double torsion method and its use for mechanical properties evaluation of brittle materials [J]. Chinese Journal of Materials Research, 1989, 3(5): 436–441.
|
| [14] |
KASAEIAN-NAEINI M, SEDIGHI M, HASHEMI R, et al. Microstructure, mechanical properties and fracture toughness of ECAPed magnesium matrix composite reinforced with hydroxyapatite ceramic particulates for bioabsorbable implants [J]. Ceramics International, 2023, 49(11): 17074–17090. DOI: 10.1016/j.ceramint.2023.02.069.
|
| [15] |
SUN N J, CHENG Y, ZHU T B, et al. Mechanical properties of binderless tungsten carbide enhanced via the addition of ZrO2-20 wt% Al2O3 composite powder and graphene nanosheets [J]. Ceramics International, 2023, 49(14): 22853–22860. DOI: 10.1016/j.ceramint.2023.04.109.
|
| [16] |
SUN N J, ZHU T B, LIANG X, et al. Improved comprehensive mechanical properties of oscillatory pressure sintered WC–ZrO2–Al2O3 ceramics with VC/Cr3C2 addition [J]. Ceramics International, 2023, 49(7): 11494–11503. DOI: 10.1016/j.ceramint.2022.11.349.
|
| [17] |
吴昊龙, 曹大可, 李俊峰, 等. 莫来石涂层对氧化铝基体力学性能的影响 [J]. 硅酸盐学报, 2023, 51(3): 750–756. DOI: 10.14062/j.issn.0454-5648.20221008.
WU H L, CAO D K, LI J F, et al. Effects of mullite coating on mechanical properties of alumina component [J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 750–756. DOI: 10.14062/j.issn.0454-5648.20221008.
|
| [18] |
KONG D K, GUO A F, WU H L, et al. Method for preparing biomimetic ceramic structures with high strength and high toughness [J]. Ceramics International, 2023, 49(24): 40284–40296. DOI: 10.1016/j.ceramint.2023.10.001.
|
| [19] |
CHAI J L, ZHU Y B, SHEN T L, et al. Assessing fracture toughness in sintered Al2O3–ZrO2(3Y)–SiC ceramic composites through indentation technique [J]. Ceramics International, 2020, 46(17): 27143–27149. DOI: 10.1016/j.ceramint.2020.07.194.
|
| [20] |
JI M, LI H Y, ZHENG J, et al. An experimental study on the strain-rate-dependent compressive and tensile response of an alumina ceramic [J]. Ceramics International, 2022, 48(19): 28121–28134. DOI: 10.1016/j.ceramint.2022.06.117.
|
| [21] |
ZAIEMYEKEH Z, LI H Y, ROMANYK D L, et al. Strain-rate-dependent behavior of additively manufactured alumina ceramics: Characterization and mechanical testing [J]. Journal of Materials Research and Technology, 2024, 28: 3794–3804. DOI: 10.1016/j.jmrt.2023.12.274.
|
| [22] |
MA Y Y, WANG Z Y, QIN Y Q. Impact of characteristic length and loading rate upon dynamic constitutive behavior and fracture process in alumina ceramics [J]. Ceramics International, 2023, 49(3): 4775–4784. DOI: 10.1016/j.ceramint.2022.09.367.
|
| [23] |
TONG S H, TIAN D Q, MA Q W, et al. Static and dynamic fracture toughness of graphite materials with varying grain sizes [J]. Journal of Nuclear Materials, 2024, 599: 155221. DOI: 10.1016/j.jnucmat.2024.155221.
|
| [24] |
PANDOURIA A K, KUMAR S, TIWARI V. Determination of static and dynamic fracture initiation toughness and numerical simulation of dynamic 3-point bend experiments of Al6063-T6 [J]. Mechanics Research Communications, 2023, 128: 104070. DOI: 10.1016/j.mechrescom.2023.104070.
|
| [25] |
陈静静. 基于高速DIC方法的脆性材料动态力学性能研究 [D]. 北京: 北京理工大学, 2014: 43–44.
CHEN J J. Study on the dynamic mechanical properties of brittle materials by high-speed DIC [D]. Beijing: Beijing Institute of Technology, 2014: 43–44.
|
| [26] |
LIU K W, GUO T F, YANG J C, et al. Static and dynamic fracture behavior of rock-concrete bi-material disc with different interface crack inclinations [J]. Theoretical and Applied Fracture Mechanics, 2023, 123: 103659. DOI: 10.1016/j.tafmec.2022.103659.
|
| [27] |
LIAN H H, SUN X J, YU Z P, et al. Study on the dynamic fracture properties and size effect of concrete based on DIC technology [J]. Engineering Fracture Mechanics, 2022, 274: 108789. DOI: 10.1016/j.engfracmech.2022.108789.
|
| [28] |
LI Z Y, WANG Z. Effect of interlayer carbon nanotube films on the quasi-static and dynamic mode Ⅰ fracture behavior of laminated composites – An experimental and numerical investigation [J]. Theoretical and Applied Fracture Mechanics, 2023, 125: 103932. DOI: 10.1016/j.tafmec.2023.103932.
|
| [29] |
FENG W H, TANG Y C, HE W M, et al. Mode Ⅰ dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar [J]. Journal of Building Engineering, 2022, 48: 103995. DOI: 10.1016/j.jobe.2022.103995.
|
| [30] |
YANG Z Q, WANG Z J, QIN N. Experimental and numerical investigation of model I dynamic fracture toughness of 95W-3.5Ni-1.5Fe alloy using the semi-circular bend specimens [J]. Engineering Fracture Mechanics, 2021, 258: 108053. DOI: 10.1016/j.engfracmech.2021.108053.
|
| [31] |
ZHANG Z Z, MAO H T, CHEN Y L, et al. Dynamic fracture toughness and damage mechanism of 38CrMoAl steel under salt spray corrosion [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103382. DOI: 10.1016/j.tafmec.2022.103382.
|
| [32] |
赵亚溥. 裂纹动态起始问题的研究进展 [J]. 力学进展, 1996, 26(3): 362–378.
ZHAO Y P. The advances of studies on the dynamic initiation of cracks [J]. Advances in Mechanics, 1996, 26(3): 362–378.
|
| [33] |
FAN C Z, XU Z J, HAN Y, et al. Study on mode I dynamic fracture characteristics with a mini three-point bending specimen for the split Hopkinson bar technique [J]. International Journal of Impact Engineering, 2023, 179: 104635. DOI: 10.1016/j.ijimpeng.2023.104635.
|
| [34] |
FAN C Z, XU Z J, HAN Y, et al. Effects of notch width and loading rate on the dynamic mode II fracture toughness of Ti-6Al-4V [J]. Engineering Fracture Mechanics, 2024, 304: 110173. DOI: 10.1016/j.engfracmech.2024.110173.
|
| [35] |
FAN C Z, XU Z J, HAN Y, et al. Loading rate effect and failure mechanisms of ultra-high-strength steel under mode Ⅱ fracture [J]. International Journal of Impact Engineering, 2023, 171: 104374. DOI: 10.1016/j.ijimpeng.2022.104374.
|
| [36] |
范昌增, 许泽建, 何晓东, 等. 加载速率对40Cr钢Ⅱ型动态断裂特性的影响 [J]. 爆炸与冲击, 2021, 41(8): 083101. DOI: 10.11883/bzycj-2021-0029.
FAN C Z, XU Z J, HE X D, et al. Effect of loading rate on the mode Ⅱ dynamic fracture characteristics of 40Cr steel [J]. Explosion and Shock Waves, 2021, 41(8): 083101. DOI: 10.11883/bzycj-2021-0029.
|
| [37] |
张永新, 范昌增, 许泽建, 等. 球墨铸铁在低温及冲击载荷下的韧脆转变行为 [J]. 爆炸与冲击, 2025, 45(8): 083103. DOI: 10.11883/bzycj-2024-0002.
ZHANG Y X, FAN C Z, XU Z J, et al. Ductile-brittle transition behaviors of nodular cast iron under low temperature and impact loading [J]. Explosion and Shock Waves, 2025, 45(8): 083103. DOI: 10.11883/bzycj-2024-0002.
|
| [38] |
蔡治城, 许泽建, 郭保桥, 等. 氧化锆陶瓷的动态弯曲断裂行为 [J]. 兵工学报, 2025, 46(4): 270–278. DOI: 10.12382/bgxb.2024.0020.
CAI Z C, XU Z J, GUO B Q, et al. Dynamic bending fracture behavior of zirconia ceramic [J]. Acta Armamentarii, 2025, 46(4): 270–278. DOI: 10.12382/bgxb.2024.0020.
|