| Citation: | ZENG Qifu, ABI Erdi, LIU Mingwei, JIANG Mingjing, DU Hongbo. Computational modeling and validation of rock-breaking radius by supercritical CO2 phase transition considering porous impacts[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0443 |
| [1] |
CHEN Y, ZHANG H W, ZHU Z J, et al. A new shock-wave test apparatus for liquid CO2 blasting and measurement analysis [J]. Measurement and Control, 2019, 52(5/6): 399–408. DOI: 10.1177/0020294019838581.
|
| [2] |
CHEN Z S, YUAN Y, YAN C L, et al. A novel carbon dioxide phase transition rock breaking technology: theory and application of non-explosive blasting [J]. Processes, 2022, 10(11): 2434. DOI: 10.3390/pr10112434.
|
| [3] |
PU C, LIU Z J, PU G. On the factors of impact pressure in supercritical CO2 phase-transition blasting-a numerical study [J]. Energies, 2022, 15(22): 8599. DOI: 10.3390/en15228599.
|
| [4] |
孙小明. 液态二氧化碳相变致裂掏槽破岩试验研究 [J]. 煤炭科学技术, 2021, 49(8): 81–87. DOI: 10.13199/j.cnki.cst.2021.08.010.
SUN X M. Experimental study on cutting and rock breaking by liquid CO2 phase transition fracturing technology [J]. Coal Science and Technology, 2021, 49(8): 81–87. DOI: 10.13199/j.cnki.cst.2021.08.010.
|
| [5] |
王莉, 陈杰, 李必红. 复杂环境下CO2膨胀爆破工程应用 [J]. 工程爆破, 2021, 27(1): 95–99. DOI: 10.19931/j.EB.20190189.
WANG L, CHEN J, LI B H. Application of CO2 expansion blasting project in complex environment [J]. Engineering Blasting, 2021, 27(1): 95–99. DOI: 10.19931/j.EB.20190189.
|
| [6] |
SHANG Z, WANG H F, LI B, et al. Experimental investigation of BLEVE in liquid CO2 phase-transition blasting for enhanced coalbed methane recovery [J]. Fuel, 2021, 292: 120283. DOI: 10.1016/j.fuel.2021.120283.
|
| [7] |
彭然, 霍中刚, 温良. 二氧化碳致裂器止飞技术研究 [J]. 煤炭科学技术, 2020, 48(S1): 134–139.
PENG R, HUO Z G, WEN L. Study on anti-flying technology of carbon dioxide fracturer [J]. Coal Science and Technology, 2020, 48(S1): 134–139.
|
| [8] |
HU S B, PANG S G, YAN Z Y. A new dynamic fracturing method: deflagration fracturing technology with carbon dioxide [J]. International Journal of Fracture, 2019, 220(1): 99–111. DOI: 10.1007/s10704-019-00403-8.
|
| [9] |
孙可明, 辛利伟, 吴迪. 超临界CO2气爆煤体致裂机理实验研究 [J]. 爆炸与冲击, 2018, 38(2): 302–308. DOI: 10.11883/bzycj-2016-0230.
SUN K M, XIN L W, WU D. Experimental study on fracture mechanism of coal caused by supercritical CO2 explosion [J]. Explosion and Shock Waves, 2018, 38(2): 302–308. DOI: 10.11883/bzycj-2016-0230.
|
| [10] |
孙可明, 辛利伟, 王婷婷, 等. 超临界CO2气爆煤体致裂规律模拟研究 [J]. 中国矿业大学学报, 2017, 46(3): 501–506. DOI: 10.13247/j.cnki.jcumt.000669.
SUN K M, XIN L W, WANG T T, et al. Simulation research on law of coal fracture caused by supercritical CO2 explosion [J]. Journal of China University of Mining & Technology, 2017, 46(3): 501–506. DOI: 10.13247/j.cnki.jcumt.000669.
|
| [11] |
谢晓锋, 李夕兵, 李启月, 等. 液态CO2相变破岩桩井开挖技术 [J]. 中南大学学报(自然科学版), 2018, 49(8): 2031–2038. DOI: 10.11817/j.issn.1672-7207.2018.08.025.
XIE X F, LI X B, LI Q Y, et al. Liquid CO2 phase-transforming rock fracturing technology in pile-well excavation [J]. Journal of Central South University (Science and Technology), 2018, 49(8): 2031–2038. DOI: 10.11817/j.issn.1672-7207.2018.08.025.
|
| [12] |
孙可明, 王金彧, 辛利伟. 超临界CO2气爆致裂爆生气体压力沿破裂面变化规律实验研究 [J]. 实验力学, 2019, 34(4): 693–699. DOI: 10.7520/1001-4888-18-001.
SUN K M, WANG J Y, XIN L W. Experimental study of variation pattern of gas pressure from explosion along fracture surface in supercritical CO2 gas explosion [J]. Journal of Experimental Mechanics, 2019, 34(4): 693–699. DOI: 10.7520/1001-4888-18-001.
|
| [13] |
ZHOU S T, JIANG N, HE X, et al. Rock breaking and dynamic response characteristics of carbon dioxide phase transition fracturing considering the gathering energy effect [J]. Energies, 2020, 13(6): 1336. DOI: 10.3390/en13061336.
|
| [14] |
ZHANG Y N, DENG J R, DENG H W, et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting [J]. International Journal of Damage Mechanics, 2019, 28(7): 1038–1052. DOI: 10.1177/1056789518807532.
|
| [15] |
周西华, 门金龙, 王鹏辉, 等. 井下液态CO2爆破增透工业试验研究 [J]. 中国安全生产科学技术, 2015, 11(9): 76–82. DOI: 10.11731/j.issn.1673-193x.2015.09.012.
ZHOU X H, MEN J L, WANG P H, et al. Industry experimental research on improving permeability by underground liquid CO2 blasting [J]. Journal of Safety Science and Technology, 2015, 11(9): 76–82. DOI: 10.11731/j.issn.1673-193x.2015.09.012.
|
| [16] |
孙可明, 辛利伟, 张树翠, 等. 超临界CO2气爆致裂规律实验研究 [J]. 中国安全生产科学技术, 2016, 12(7): 27–31. DOI: 10.11731/j.issn.1673-193x.2016.07.005.
SUN K M, XIN L W, ZHANG S C, et al. Experimental study on laws of crack caused by gas burst of supercritical carbon dioxide [J]. Journal of Safety Science and Technology, 2016, 12(7): 27–31. DOI: 10.11731/j.issn.1673-193x.2016.07.005.
|
| [17] |
田泽础. 液态二氧化碳相变致裂裂缝形态及影响因素研究 [D]. 徐州: 中国矿业大学, 2018: 28–37.
TIAN Z C. Crack form and influencing factors of liquid carbon dioxide phase transition fracturing [D]. Xuzhou: University of Mining and Technology, 2018: 28–37.
|
| [18] |
KANG J H, ZHOU F B, QIANG Z Y, et al. Evaluation of gas drainage and coal permeability improvement with liquid CO2 gasification blasting [J]. Advances in Mechanical Engineering, 2018, 10(4): 1–15. DOI: 10.1177/1687814018768578.
|
| [19] |
题正义, 陈波. 亭南煤矿液态CO2致裂巷道卸压技术的应用研究 [J]. 金属矿山, 2019(4): 48–52. DOI: 10.19614/j.cnki.jsks.201904010.
TI Z Y, CHEN B. Application of pressure relief technology of liquid CO2 fracturing roadway in Tingnan coal mine [J]. Metal Mine, 2019(4): 48–52. DOI: 10.19614/j.cnki.jsks.201904010.
|
| [20] |
王明宇. 液态二氧化碳相变爆破裂纹扩展规律研究及应用 [D]. 徐州: 中国矿业大学, 2018: 36–54.
WANG M Y. Study on crack propagation law of liquid carbon dioxide phase transition blasting and its application [D]. Xuzhou: University of Mining and Technology, 2018: 36–54.
|
| [21] |
孙可明, 辛利伟, 吴迪, 等. 初应力条件下超临界CO2气爆致裂规律模拟研究 [J]. 振动与冲击, 2018, 37(12): 232–238. DOI: 10.13465/j.cnki.jvs.2018.12.035.
SUN K M, XIN L W, WU D, et al. Simulation of fracture law of supercritical CO2 explosion under initial stress condition [J]. Journal of Vibration and Shock, 2018, 37(12): 232–238. DOI: 10.13465/j.cnki.jvs.2018.12.035.
|
| [22] |
孙可明, 王金彧, 辛利伟. 不同应力差条件下超临界CO2气爆煤岩体气楔作用次生裂纹扩展规律研究 [J]. 应用力学学报, 2019, 36(2): 466–472. DOI: 10.11776/cjam.36.02.B130.
SUN K M, WANG J Y, XIN L W. Research on the law of secondary cracks propagation in coal and rock caused by gas wedging during supercritical CO2 explosion under different stress differences [J]. Chinese Journal of Applied Mechanics, 2019, 36(2): 466–472. DOI: 10.11776/cjam.36.02.B130.
|
| [23] |
孙可明, 辛利伟, 吴迪, 等. 初应力条件下超临界CO2气爆致裂规律研究 [J]. 固体力学学报, 2017, 38(5): 473–482. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.05.011.
SUN K M, XIN L W, WU D, et al. Mechanism of fracture caused by supercritical CO2 explosion under the impact of initial stress [J]. Chinese Journal of Solid Mechanics, 2017, 38(5): 473–482. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.05.011.
|
| [24] |
赵博, 邵东亮, 曹先锋, 等. 水平圆管超临界二氧化碳摩阻试验研究 [J]. 科学技术与工程, 2016, 16(25): 75–78. DOI: 1671-1815 2016 025-0075-04.
ZHAO B, SHAO D L, CAO X F, et al. An experimental study of supercritical carbon dioxide pressure drop in a horizontal tube [J]. Science Technology and Engineering, 2016, 16(25): 75–78. DOI: 1671-1815 2016 025-0075-04.
|
| [25] |
JOHLITZ M, DIERCKS N, LION A. Thermo-oxidative ageing of elastomers: a modelling approach based on a finite strain theory [J]. International Journal of Plasticity, 2014, 63: 138–151. DOI: 10.1016/j.ijplas.2014.01.012.
|
| [26] |
VOISIN C. Bloch’s conjecture for Catanese and Barlow surfaces [J]. Journal of Differential Geometry, 2014, 97(1): 149–175. DOI: 10.4310/jdg/1404912107.
|
| [27] |
CHEN Z F, LI X Y, WANG W, et al. Dynamic burst pressure analysis of cylindrical shells based on average shear stress yield criterion [J]. Thin-Walled Structures, 2020, 148: 106498. DOI: 10.1016/j.tws.2019.106498.
|
| [28] |
YAO Y P, HU J, ZHOU A N, et al. Unified strength criterion for soils, gravels, rocks, and concretes [J]. Acta Geotechnica, 2015, 10(6): 749–759. DOI: 10.1007/s11440-015-0404-x.
|
| [29] |
BAI M, ELSWORTH D. Coupled processes in subsurface deformation, flow, and transport [M]. Reston, VA: American Society of Civil Engineers, 2000.
|
| [30] |
韦汉. 隧道工程聚能爆破破岩机理及参数优化研究 [D]. 南宁: 广西大学, 2021: 45–58. DOI: 10.27034/d.cnki.ggxiu.2021.000859.
WEI H. Study on rock fragmentation mechanism and parameter optimization of shaped charge blasting in tunnel engineering [J]. Nanning: Guangxi University, 2021: 45–58. DOI: 10.27034/d.cnki.ggxiu.2021.000859.
|
| [31] |
费鸿禄, 苏强, 蒋安俊, 等. 爆破载荷下隧道围岩破坏裂隙范围研究 [J]. 爆破器材, 2019, 48(2): 51–56. DOI: 10.3969/j.issn.1001-8352.2019.02.010.
FEI H L, SU Q, JIANG A J, et al. Damage fracture range of tunnel surrounding rock under blasting load [J]. Explosive Materials, 2019, 48(2): 51–56. DOI: 10.3969/j.issn.1001-8352.2019.02.010.
|
| [32] |
肖思友, 姜元俊, 刘志祥, 等. 高地应力下硬岩爆破破岩特性及能量分布研究 [J]. 振动与冲击, 2018, 37(15): 143–149. DOI: 10.13465/j.cnki.jvs.2018.15.020.
XIAO S Y, JIANG Y J, LIU Z X, et al. Hard rock blasting energy distribution and fragmentation characteristics under high earth stress [J]. Journal of Vibration and Shock, 2018, 37(15): 143–149. DOI: 10.13465/j.cnki.jvs.2018.15.020.
|
| [33] |
高维廷, 朱哲明, 朱伟, 等. 动荷载下岩石裂纹动态扩展行为实验研究综述 [J]. 爆炸与冲击, 2023, 43(8): 081101. DOI: 10.11883/bzycj-2022-0526.
GAO W Y, ZHU Z M, ZHU W, et al. Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review [J]. Explosion and Shock Waves, 2023, 43(8): 081101. DOI: 10.11883/bzycj-2022-0526.
|
| [34] |
FAROTTI E, MANCINI E, LATTANZI A, et al. Effect of temperature and strain rate on the formation of shear bands in polymers under quasi-static and dynamic compressive loadings: proposed constitutive model and numerical validation [J]. Polymer, 2022, 245: 124690. DOI: 10.1016/j.polymer.2022.124690.
|
| [35] |
吴飞鹏, 刘洪志, 任杨, 等. 燃爆冲击作用下岩石初始破坏区形成机制与主控因素 [J]. 爆炸与冲击, 2016, 36(5): 663–669. DOI: 10.11883/1001-1455(2016)05-0663-07.
WU F P, LIU H Z, REN Y, et al. Formation mechanism and main controlling factors of rock's initial damaged zone under explosive impact effect [J]. Explosion and Shock Waves, 2016, 36(5): 663–669. DOI: 10.11883/1001-1455(2016)05-0663-07.
|
| [36] |
中华人民共和国水利部. 水工建筑物岩石地基开挖施工技术规范: SL 47—2020 [S]. 北京: 中国水利水电出版社, 2021.
Ministry of Water Resources of the People’s Republic of China. Technical specification for excavation construction of rock-foundation of hydraulic structures: SL 47—2020 [S]. Beijing: China Water & Power Press, 2021.
|
| [37] |
DING C X, YANG R S, FENG C. Stress wave superposition effect and crack initiation mechanism between two adjacent boreholes [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104622. DOI: 10.1016/j.ijrmms.2021.104622.
|
| [38] |
CHEN Z S, YUAN Y, QIN Z H, et al. The mechanism of crack propagation under dynamic loading stress at different rates [J]. Computational Particle Mechanics, 2024, 11(6): 2715–2726. DOI: 10.1007/s40571-024-00748-5.
|
| [39] |
ZENG Y Q, LI H B, XIA X, et al. Experimental study on cavity pressure of carbon dioxide fracturing tube [J]. Journal of Vibroengineering, 2021, 23(7): 1602–1620. DOI: 10.21595/JVE.2021.21967.
|
| [40] |
肖诚旭. 液态二氧化碳相变致裂的试验研究 [D]. 武汉: 湖北工业大学, 2018: 16–22.
XIAO C X. Experimental study of phase-transforming fracturing of liquid carbon dioxide [D]. Wuhan: Hubei University of Technology, 2018: 16–22.
|
| [41] |
ABI E D, ZENG Q F, FU L, et al. Characterization and modeling of supercritical CO2 pulse pressures: effects of activator mass and discharge plate thickness [J]. Rock Mechanics Bulletin, 2024, 3(3): 100126. DOI: 10.1016/j.rockmb.2024.100126.
|