Citation: | ZHAO Haochuan, FENG Xiaowei, LIU Yaolu, LI Tianyu, HU Yanhui, TAN Xiaojun, NIE Yuan. Damage characteristics of T800 carbon fiber plates subject to typical hail impact loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0453 |
[1] |
刘爱平, 林仁伟, 陈壁茂. 民用飞机复合材料结构在位修理环境控制方法研究 [J]. 航空维修与工程, 2021(1): 60–62. DOI: 10.3969/j.issn.1672-0989.2021.01.022.
LIU A P, LIN R W, CHEN B M, et al. Study on an environmental control method for in-site repair of civil aircraft composite structure [J]. Aviation Maintenance & Engineering, 2021(1): 60–62. DOI: 10.3969/j.issn.1672-0989.2021.01.022.
|
[2] |
宋振华. 冰载荷作用下碳纤维复合材料桁条加筋曲面板的冲击动力响应研究 [D]. 广州: 暨南大学, 2014.
SONG Z H. The dynamic response of stringer-stiffened curved composite panels under the hail ice impact [D]. Guangzhou: Jinan University, 2014.
|
[3] |
HOLOTIUK M, NALOBINA O, HOMON S, et al. Investigation of ice impact destruction process [J]. Procedia Structural Integrity, 2024, 59: 531–537. DOI: 10.1016/j.prostr.2024.04.075.
|
[4] |
KIM H, KEUNE J N. Compressive strength of ice at impact strain rates [J]. Journal of Materials Science, 2007, 42(8): 2802–2806. DOI: 10.1007/s10853-006-1376-x.
|
[5] |
MÜLLER F, BÖHM A, HERRNRING H, et al. Influence of the ice shape on ice-structure impact loads [J]. Cold Regions Science and Technology, 2024, 221: 104175. DOI: 10.1016/j.coldregions.2024.104175.
|
[6] |
PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Analysis of ice impact process at high velocity [J]. Experimental Mechanics, 2015, 55(9): 1669–1679. DOI: 10.1007/s11340-015-0067-4.
|
[7] |
崔一诺, 张航, 卢鹏, 等. 冰冲击荷载试验研究 [J]. 哈尔滨工程大学学报, 2022, 43(1): 25–31. DOI: 10.11990/jheu.202008048.
CUI Y N, ZHANG H, LU P, et al. Experimental study on impact load on ice [J]. Journal of Harbin Engineering University, 2022, 43(1): 25–31. DOI: 10.11990/jheu.202008048.
|
[8] |
GUÉGAN P, OTHMAN R, LEBRETON D, et al. Experimental investigation of the kinematics of post-impact ice fragments [J]. International Journal of Impact Engineering, 2011, 38(10): 786–795. DOI: 10.1016/j.ijimpeng.2011.05.003.
|
[9] |
张永康, 李玉龙, 汤忠斌, 等. 冰雹撞击下泡沫铝夹芯板的动态响应 [J]. 爆炸与冲击, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.
ZHANG Y K, LI Y L, TANG Z B, et al. Dynamic response of aluminum-foam-based sandwich panels under hailstone impact [J]. Explosion and Shock Waves, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.
|
[10] |
BURCHELL M J, HARRISS K H. Catastrophic disruption by hypervelocity impact of multi-layered spherical ice targets [J]. International Journal of Impact Engineering, 2022, 168: 104294. DOI: 10.1016/j.ijimpeng.2022.104294.
|
[11] |
WANG Z G, ZHAO M Q, LIU K, et al. Experimental analysis and prediction of CFRP delamination caused by ice impact [J]. Engineering Fracture Mechanics, 2022, 273: 108757. DOI: 10.1016/j.engfracmech.2022.108757.
|
[12] |
SONG Z H, LE J, WHISLER D, et al. Skin-stringer interface failure investigation of stringer-stiffened curved composite panels under hail ice impact [J]. International Journal of Impact Engineering, 2018, 122: 439–450. DOI: 10.1016/j.ijimpeng.2018.09.014.
|
[13] |
LIU X, QU J, MAO J Z, et al. Mechanical responses and damage characteristics of the high-velocity impact of ice projectiles on foam sandwich structure [J]. International Journal of Impact Engineering, 2024, 191: 104994. DOI: 10.1016/j.ijimpeng.2024.104994.
|
[14] |
BANIK A, ZHANG C, KHAN M H, et al. Low-velocity ice impact response and damage phenomena on steel and CFRP sandwich composite [J]. International Journal of Impact Engineering, 2022, 162: 104134. DOI: 10.1016/j.ijimpeng.2021.104134.
|
[15] |
APPLEBY-THOMAS G J, HAZELL P J, DAHINI G. On the response of two commercially-important CFRP structures to multiple ice impacts [J]. Composite Structures, 2011, 93(10): 2619–2627. DOI: 10.1016/j.compstruct.2011.04.029.
|
[16] |
林茜. 冰球撞击碳纤维复合材料板的试验和数值模拟研究 [D]. 宁波: 宁波大学, 2021.
LIN Q. Experimental and numerical simulation of ice ball impact on carbon fiber composite plate [D]. Ningbo: Ningbo University, 2021.
|
[17] |
张晓琪. 冰弹撞击碳纤维/双马来酰亚胺的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2021.
ZHANG X Q. Damage characteristics of carbon fiber/bismaleimide impacted by ice projectile [D]. Shenyang: Shenyang Ligong University, 2021. DOI: 10.27323/d.cnki.gsgyc.2021.000321.
|
[18] |
GAO Y B, SHI L T, LU T, et al. Ballistic and delamination mechanism of CFRP /aluminum laminates subjected to high velocity impact [J]. Engineering Fracture Mechanics, 2024, 295: 109797. DOI: 10.1016/j.engfracmech.2023.109797.
|
[19] |
刘建刚, 李玉龙, 索涛, 等. 复合材料T型接头冰雹高速撞击损伤的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 451–456. DOI: 10.11883/1001-1455(2014)04-0451-06.
LIU J G, LI Y L, SUO T, et al. Numerical simulation of high velocity impact of composite T-joint by hailstone [J]. Explosion and Shock Waves, 2014, 34(4): 451–456. DOI: 10.11883/1001-1455(2014)04-0451-06.
|
[20] |
TANG E L, WANG X X, HAN Y F, et al. Damage characteristics of ice projectile impacting on CF/BMI composite target at high speed [J]. International Journal of Impact Engineering, 2022, 167: 104285. DOI: 10.1016/j.ijimpeng.2022.104285.
|
[21] |
PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, LÓPEZ-PUENTE J, et al. Numerical methodology to analyze the ice impact threat: application to composite structures [J]. Materials & Design, 2018, 141: 350–360. DOI: 10.1016/j.matdes.2017.12.044.
|
[22] |
王计真. 冰雹动态本构建模与验证 [J]. 航空科学技术, 2023, 34(8): 51–56. DOI: 10.19452/j.issn1007-5453.2023.08.007.
WANG J Z. Modeling and verification of the dynamic constitutive of the hailstone [J]. Aeronautical Science & Technology, 2023, 34(8): 51–56. DOI: 10.19452/j.issn1007-5453.2023.08.007.
|
[23] |
ZHOU Y, XUE B, GUO Y X, et al. Mechanical responses of CFRP/PVC foam sandwich plate impacted by hailstone [J]. International Journal of Impact Engineering, 2023, 178: 104631. DOI: 10.1016/j.ijimpeng.2023.104631.
|
[24] |
TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation [J]. International Journal of Impact Engineering, 2013, 57: 43–54. DOI: 10.1016/j.ijimpeng.2013.01.013.
|
[25] |
谭晓军, 冯晓伟, 胡艳辉, 等. 层状结构冰球的高速撞击特性试验 [J]. 爆炸与冲击, 2020, 40(11): 113301. DOI: 10.11883/bzycj-2020-0047.
TAN X J, FENG X W, HU Y H, et al. Experimental investigation on characteristics of layered ice spheres under high-velocity impact [J]. Explosion and Shock Waves, 2020, 40(11): 113301. DOI: 10.11883/bzycj-2020-0047.
|
[26] |
KIM H, WELCH D A, KEDWARD K T. Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels [J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(1): 25–41. DOI: 10.1016/S1359-835X(02)00258-0.
|
[27] |
Pernas-Sánchez J, Artero-Guerrero J. A, Varas D, et al. Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates [J]. International Journal of Impact Engineering, 2016, 96: 1–10. DOI: 10.1016/j.ijimpeng.2016.05.010.
|
[28] |
DOLATI S, FEREIDOON A, SABET A R. Experimental investigation into glass fiber/epoxy composite laminates subjected to single and repeated high-velocity impacts of ice [J]. Iranian Polymer Journal, 2014, 23(6): 477–486. DOI: 10.1007/s13726-014-0242-y.
|
[29] |
PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates [J]. International Journal of Impact Engineering, 2016, 96: 1–10. DOI: 10.1016/j.ijimpeng.2016.05.010.
|