| Citation: | YAO Shujian, WANG Yanjing, CHEN Yikai, CHEN Feipeng, WANG Zhifu, ZHANG Duo. A review of equivalent loading test techniques for simulating explosion load[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0040 |
| [1] |
张飞燕, 张念思, 韩颖, 等. 近10年我国民爆物品爆炸事故统计及预测 [J]. 爆破, 2022, 39(4): 192–200. DOI: 10.3963/j.issn.1001-487X.2022.04.028.
ZHANG F Y, ZHANG N S, HAN Y, et al. Statistics and prediction of civil explosive articles explosion accidents in China in recent decade [J]. Blasting, 2022, 39(4): 192–200. DOI: 10.3963/j.issn.1001-487X.2022.04.028.
|
| [2] |
常笑康, 罗本永, 陈长海, 等. 近距空爆载荷作用下高韧钢的抗爆性能及影响因素研究 [J]. 高压物理学报, 2024, 38(5): 054103. DOI: 10.11858/gywlxb.20240732.
CHANG X K, LUO B Y, CHEN C H, et al. Study on the blast-resistant performance and influence factors of high-toughness steel subjected to close-range air-blasts [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054103. DOI: 10.11858/gywlxb.20240732.
|
| [3] |
赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能 [J]. 高压物理学报, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.
ZHAO C F, ZHANG L, LI X J. Damage failure and anti-blast performance of concrete-Infilled double steel corrugated-plate wall under near field explosion [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.
|
| [4] |
毛致远, 段超伟, 宋浦, 等. 基于有效冲量的水下爆炸冲击波对平板结构的毁伤准则 [J]. 高压物理学报, 2023, 37(2): 025103. DOI: 10.11858/gywlxb.20220625.
MAO Z Y, DUAN C W, SONG P, et al. Criterion of plate structure damage caused by underwater explosion shock wave based on effective impulse [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025103. DOI: 10.11858/gywlxb.20220625.
|
| [5] |
UFC. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington, DC, USA: UFC, 2008.
|
| [6] |
Canadian Standards Association. S850-12 Design and assessment of buildings subjected to blast loads [S]. Toronto, Ontario, Canada: Canadian Standards Association, 2012.
|
| [7] |
American Society of Civil Engineers. ASCE/SEI 59-11 Blast protection of buildings [S]. Reston, Virginia, USA: American Society of Civil Engineers, 2011.
|
| [8] |
黄家蓉, 王幸, 周松柏. 飞行器地面模拟试验中电磁脉冲干扰分析与解决措施 [J]. 防护工程, 2017, 39(1): 29–33.
HUANG J R, WANG X, ZHOU S B. Electromagnetic pulse interference analysis and solving method in the aircraft ground simulation test [J]. Protective Engineering, 2017, 39(1): 29–33.
|
| [9] |
BAKER W E. Explosions in air [M]. Austin: University of Texas Press, 1973: 55–136.
|
| [10] |
DEWEY J M. Measurement of the physical properties of blast waves [M]//IGRA O, SEILER F. Experimental Methods of Shock Wave Research. Cham: Springer, 2016: 53–86.
|
| [11] |
孙远翔, 田俊宏. 近场水下爆炸载荷及舰船结构动态响应研究综述 [J]. 舰船科学技术, 2019, 41(6): 1–8. DOI: 10.3404/j.issn.1672-7649.2019.06.001.
SUN Y X, TIAN J H. Review of near-field underwater explosion load and ship structure dynamic response [J]. Ship Science and Technology, 2019, 41(6): 1–8. DOI: 10.3404/j.issn.1672-7649.2019.06.001.
|
| [12] |
HE Z H, DU Z P, ZHANG L, et al. Damage mechanisms of full-scale ship under near-field underwater explosion [J]. Thin-Walled Structures, 2023, 189: 110872. DOI: 10.1016/j.tws.2023.110872.
|
| [13] |
ISMAIL A, EZZELDIN M, El-DAKHAKHNI W, et al. Blast load simulation using conical shock tube systems [J]. International Journal of Protective Structures, 2020, 11(2): 135–158. DOI: 10.1177/2041419619858098.
|
| [14] |
RIGBY S E, TYAS A, BENNETT T, et al. The negative phase of the blast load [J]. International Journal of Protective Structures, 2014, 5(1): 1–19. DOI: 10.1260/2041-4196.5.1.1.
|
| [15] |
FRIEDLANDER F G. The diffraction of sound pulses I. Diffraction by a semi-infinite plane [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1946, 186(1006): 322–344. DOI: 10.1098/rspa.1946.0046.
|
| [16] |
程祥, 杨明, 郭亚丽, 等. 修正的Friedlander方程指数衰减因子 [J]. 爆炸与冲击, 2009, 29(4): 425–428. DOI: 10.11883/1001-1455(2009)04-0425-04.
CHENG X, YANG M, GUO Y L, et al. Analysis on an exponential attenuation factor in the modified Friedlander equation by overpressure tests [J]. Explosion and Shock Waves, 2009, 29(4): 425–428. DOI: 10.11883/1001-1455(2009)04-0425-04.
|
| [17] |
RUSHCHITSKY J J, YURCHUK V M. Distortion of a nonlinear elastic solitary plane wave with Friedlander profile [J]. International Applied Mechanics, 2022, 58(4): 389–397. DOI: 10.1007/s10778-022-01164-z.
|
| [18] |
DEWEY J M. The shape of the blast wave: studies of the Friedlander equation [C]//International Symposium on Military Aspects of Blast and Shock (MABS 21). Jerusalem, 2010: 1-9.
|
| [19] |
杨科之, 刘盛. 空气冲击波传播和衰减研究进展 [J]. 防护工程, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001.
YANG K Z, LIU S. Progress of research on propagation and attenuation of air blast [J]. Protective Engineering, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001.
|
| [20] |
STEWART M G. Simplified calculation of air blast variability and reliability-based design load factors for spherical air burst and hemispherical surface burst explosions [J]. International Journal of Protective Structures, 2022, 13(2): 144–160. DOI: 10.1177/20414196211043537.
|
| [21] |
SI D D, PAN Z F, ZHANG H P. Probabilistic assessment and expression of load factor design model for explosive blast loading [J]. Reliability Engineering & System Safety, 2024, 242: 109802. DOI: 10.1016/j.ress.2023.109802.
|
| [22] |
IOANNOU O, RIGOUTSOS G, VAMVATSIKOS D, et al. A baseline approach for probabilistic blast risk analysis of building cladding under external explosions [J]. Structural Safety, 2024, 109: 102472. DOI: 10.1016/j.strusafe.2024.102472.
|
| [23] |
BOGOSIAN D, FERRITTO J, SHI Y. Measuring uncertainty and conservatism in simplified blast models [C]// 30th Explosives Safety Seminar, Atlanta, Georgia, 2002.
|
| [24] |
XIAO W F, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence concept for blast-resistant design [J]. International Journal of Mechanical Sciences, 2020, 185: 105871. DOI: 10.1016/j.ijmecsci.2020.105871.
|
| [25] |
RATCLIFF A, RIGBY S, CLARKE S, et al. A review of blast loading in the urban environment [J]. Applied Sciences, 2023, 13(9): 5349. DOI: 10.3390/ app13095349. DOI: 10.3390/app13095349.
|
| [26] |
SHIN J, WHITTAKER A S, CORMIE D. Incident and normally reflected overpressure and impulse for detonations of spherical high explosives in free air [J]. Journal of Structural Engineering, 2015, 141(12): 04015057. DOI: 10.1061/(ASCE)ST.1943-541X.0001305.
|
| [27] |
王雅, 张宏, 陈翔. 大当量TNT空中爆炸超压的模拟与修正 [J]. 力学研究, 2019, 8(4): 229–237. DOI: 10.12677/IJM.2019.84026.
WANG Y, ZHANG H, CHEN X. Simulation and correction of large equivalent TNT air explosion overpressure [J]. International Journal of Mechanics Research, 2019, 8(4): 229–237. DOI: 10.12677/IJM.2019.84026.
|
| [28] |
PENG W W, PAN M L, LENG C J, et al. Blast loading prediction in a typical urban environment based on Bayesian deep learning [J]. Engineering Applications of Computational Fluid Mechanics, 2025, 19(1): 2445765. DOI: 10.1080/19942060.2024.2445765.
|
| [29] |
DENNIS A A, RIGBY S E. The direction-encoded neural network: a machine learning approach to rapidly predict blast loading in obstructed environments [J]. International Journal of Protective Structures, 2024, 15(3): 455–483. DOI: 10.1177/ 20414196231177364. DOI: 10.1177/20414196231177364.
|
| [30] |
LOUAR M A, BELKASSEM B, OUSJI H, et al. Explosive driven shock tube loading of aluminium plates: experimental study [J]. International Journal of Impact Engineering, 2015, 86: 111–123. DOI: 10.1016/j.ijimpeng.2015.07.013.
|
| [31] |
张云峰, 陈博, 魏欣, 等. 空气自由场爆炸冲击波数值建模及应用 [J]. 爆炸与冲击, 2023, 43(11): 114202. DOI: 10.11883/bzycj-2023-0004.
ZHANG Y F, CHEN B, WEI X, et al. Numerical modeling and application of shock wave of free-field air explosion [J]. Explosion and Shock Waves, 2023, 43(11): 114202. DOI: 10.11883/bzycj-2023-0004.
|
| [32] |
BREWER T R, CRAWFORD J E, MORRILL K B, et al. Design, analysis, and testing of a blast- resistant building façade [J]. International Journal of Computational Methods and Experimental Measurements, 2016, 4(3): 191–200. DOI: 10.2495/CMEM-V4-N3-191-200.
|
| [33] |
JACQUES E. Blast retrofit of reinforced concrete walls and slabs [D]. Ottawa: University of Ottawa, 2011: 40–122.
|
| [34] |
张坤玉, 陈德, 吴昊. 高压气体驱动激波管的数值模拟与参数影响分析 [J]. 高压物理学报, 2023, 37(3): 033301. DOI: 10.11858/gywlxb.20220704.
ZHANG K Y, CHEN D, WU H. Numerical simulation and parametric analysis of high-pressure gas-driven shock tube [J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 033301. DOI: 10.11858/gywlxb.20220704.
|
| [35] |
PAYNE T, WILLIAMS A, WORFOLK T, et al. Large-scale explosive arena trials – is your target being loaded correctly? [J]. Explosives Engineering, 2016: 10–16.
|
| [36] |
马亮亮, 吴昊. 爆炸作用下预应力RC梁桥的损伤评估 [J]. 工程力学, 2025, 42(11): 159–172. DOI: 10.6052/j.issn.1000-4750.2023.05.0378.
MA L L, WU H. Damage assessment of prestressed RC girderbridge under explosion [J]. Engineering Mechanics, 2025, 42(11): 159–172. DOI: 10.6052/j.issn.1000-4750.2023.05.0378.
|
| [37] |
RITCHIE C B, PACKER J A, SEICA M V, et al. Rectangular hollow sections subject to blast loading [J]. Journal of Structural Engineering, 2017, 143(12): 04017167. DOI: 10.1061/(ASCE)ST.1943-541X.0001922.
|
| [38] |
YAO S J, CHEN F P, WANG Y J, et al. Experimental and numerical investigation on the dynamic response and damage of large-scale multi-box structure under internal blast loading [J]. Thin-Walled Structures, 2023, 183: 110430. DOI: 10.1016/j.tws.2022.110430.
|
| [39] |
周岳兰, 裴鲁, 龙仁荣, 等. 激波管内压力脉冲演化特性及模拟空爆冲击波的方法研究 [J]. 兵工学报, 2023, 44(12): 3815–3825. DOI: 10.12382/bgxb.2023.0284.
ZHOU Y L, PEI L, LONG R R, et al. Study on the evolution characteristics of pressure pulse in shock tube and a method of simulating air explosion shock wave [J]. Acta Armamentarii, 2023, 44(12): 3815–3825. DOI: 10.12382/bgxb.2023.0284.
|
| [40] |
KOCHAVI E, GRUNTMAN S, BEN-DOR G, et al. Design and construction of an in-laboratory novel blast wave simulator [J]. Experimental Mechanics, 2020, 60(8): 1149–1159. DOI: 10.1007/s11340-020-00650-0.
|
| [41] |
DAVY H. VII. Some researches on flame [J]. Philosophical Transactions of the Royal Society of London, 1817, 107: 45–76. DOI: 10.1098/rstl.1817.0008.
|
| [42] |
VIEILLE M. Étude sur le role des discontinuités dans les phénomènes de propagation [J]. Journal of Physics: Theories and Applications, 1900, 9(1): 621–644. DOI: 10.1051/JPHYSTAP:019000090062100.
|
| [43] |
VIELLE P. Sur les discontinuités produites par la détente brusque de gaz comprimés [J]. Comptes Rendus de lÁ cadémie des Sciences, 1889, 129: 1228.
|
| [44] |
IGRA O, SEILER F. Experimental methods of shock wave research [M]. Cham: Springer, 2016: 3–52. DOI: 10.1007/978-3-319-23745-9.
|
| [45] |
汤文辉. 冲击波物理教程 [M]. 长沙: 国防科技大学出版社, 2016: 195–202.
|
| [46] |
COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves [M]. New York: Springer, 1999: 83–99.
|
| [47] |
ANDERSON J D JR. Modern compressible flow: with historical perspective [M]. New York: McGraw-Hill, 1990.
|
| [48] |
殷文骏, 童念雪, 程帅, 等. 爆炸驱动激波管冲击波压力参数研究 [J]. 现代应用物理, 2024, 15(2): 021003. DOI: 10.12061/j.issn.2905-6223.2024.021003.
YIN W J, TONG N X, CHENG S, et al. Shock wave pressure parameters of blast-driven shock tube [J]. Modern Applied Physics, 2024, 15(2): 021003. DOI: 10.12061/j.issn.2905-6223.2024.021003.
|
| [49] |
SCHIMIZZE B, SON S F, GOEL R, et al. An experimental and numerical study of blast induced shock wave mitigation in sandwich structures [J]. Applied Acoustics, 2013, 74(1): 1–9. DOI: 10.1016/j.apacoust.2012.05.011.
|
| [50] |
胡洋, 杨雨欣, 吴秋遐. 基于激波管系统对瓦斯爆炸的研究 [J]. 华北科技学院学报, 2022, 19(4): 89–93. DOI: 10.19956/j.cnki.ncist.2022.04.015.
HU Y, YANG Y X, WU Q X. Study on gas explosion based on shock tube system [J]. Journal of North China Institute of Science and Technology, 2022, 19(4): 89–93. DOI: 10.19956/j.cnki.ncist.2022.04.015.
|
| [51] |
LOUAR M A, BELKASSEM B, OUSJI H, et al. Estimation of the strain rate hardening of aluminium using an inverse method and blast loading [J]. Journal of Dynamic Behavior of Materials, 2017, 3(3): 347–361. DOI: 10.1007/s40870-017-0101-y.
|
| [52] |
SPRANGHERS K, VASILAKOS I, LECOMPTE D, et al. Full-field deformation measurements of aluminum plates under free air blast loading [J]. Experimental Mechanics, 2012, 52(9): 1371–1384. DOI: 10.1007/s11340-012-9593-5.
|
| [53] |
SPRANGHERS K, VASILAKOS I, LECOMPTE D, et al. Identification of the plastic behavior of aluminum plates under free air explosions using inverse methods and full-field measurements [J]. International Journal of Solids and Structures, 2014, 51(1): 210–226. DOI: 10.1016/j.ijsolstr.2013.09.027.
|
| [54] |
SPRANGHERS K, VASILAKOS I, LECOMPTE D, et al. Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions [J]. International Journal of Impact Engineering, 2013, 54: 83–95. DOI: 10.1016/j.ijimpeng.2012.10.014.
|
| [55] |
ZALESAK J F, POCHÉE L B. The shock test facility: an explosive-driven, water-filled conical shock tube [C]//Proceedings of a Conference Sponsored by the Department of Defense, the National Aeronautics and Space Administration, and the Department of Energy. Virginia Beach, 1989: 73–76.
|
| [56] |
STEWART J B, PECORA C. Explosively driven air blast in a conical shock tube [J]. Review of Scientific Instruments, 2015, 86(3): 035108. DOI: 10.1063/1.4914898.
|
| [57] |
STEWART J B. Influence of explosively driven shock tube configuration on the mid-field blast environment [J]. AIP Conference Proceedings, 2018, 1979(1): 160026. DOI: 10.1063/1.5045025.
|
| [58] |
STEWART J B. Approximating a free-field blast environment in the test section of an explosively driven conical shock tube [J]. Shock Waves, 2019, 29(2): 355–360. DOI: 10.1007/S00193-018-0811-7.
|
| [59] |
郑监, 卢芳云, 陈荣. 柱形装药条件下锥形水中爆炸激波管内的冲击波特性 [J]. 爆炸与冲击, 2021, 41(10): 103201. DOI: 10.11883/bzycj-2020-0316.
ZHENG J, LU F Y, CHEN R. Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition [J]. Explosion and Shock Waves, 2021, 41(10): 103201. DOI: 10.11883/bzycj-2020-0316.
|
| [60] |
张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube [J]. Equipment Environmental Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
|
| [61] |
GUO Q P, YANG S J, WANG Y C, et al. Prediction research for blasting peak particle velocity based on random GA-BP network group [J]. Arabian Journal of Geosciences, 2022, 15(15): 1351. DOI: 10.1007/s12517-022-10615-3.
|
| [62] |
陈梓薇, 王仲琦, 曾令辉. 基于BP神经网络的爆炸用激波管峰值压力预测方法 [J]. 爆炸与冲击, 2024, 44(5): 054101. DOI: 10.11883/bzycj-2023-0187.
CHEN Z W, WANG Z Q, ZENG L H. A method for predicting peak pressure in an explosion shock tube based on BP neural network [J]. Explosion and Shock Waves, 2024, 44(5): 054101. DOI: 10.11883/bzycj-2023-0187.
|
| [63] |
KANG Y, WANG J L, ZHANG S Z, et al. A review of the development of shock tubes for simulating blast waves [C]//2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI). Harbin: IEEE, 2023: 416–425. DOI: 10.1109/ICEMI59194.2023.10269910.
|
| [64] |
SKOTAK M, ALAY E, CHANDRA N. On the accurate determination of shock wave time-pressure profile in the experimental models of blast-induced neurotrauma [J]. Frontiers in Neurology, 2018, 9: 52. DOI: 10.3389/fneur.2018.00052.
|
| [65] |
UY B, REMENNIKOV A, RITZEL D, et al. Development of the Australian National facility for physical blast simulation [C]//12th International Conference on Shock & Impact Loads on Structures. Singapore, 2017: 15–16.
|
| [66] |
LLOYD A, JACQUES E, SAATCIOGLU M, et al. Capabilities of a shock tube to simulate blast loading on structures [J]. Special Publication, 2011, 281: 1–20. DOI: 10.14359/51683611.
|
| [67] |
LLOYD A, SAATCIOGLU M, PALERMO D. New shock tube testing facilities for simulated blast loading of structural and non-structural components [C]//2nd International Workshop on Performance, Protection & Strengthening of Structures Under Extreme Loading. Hayama, 2009.
|
| [68] |
CHANDRA N, GANPULE S, KLEINSCHMIT N N, et al. Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling [J]. Shock Waves, 2012, 22(5): 403–415. DOI: 10.1007/s00193-012-0399-2.
|
| [69] |
LEBLANC J, GARDNER N, SHUKLA A. Effect of polyurea coatings on the response of curved E-glass/vinyl ester composite panels to underwater explosive loading [J]. Composites Part B: Engineering, 2013, 44(1): 565–574. DOI: 10.1016/j.compositesb.2012.02.038.
|
| [70] |
LEBLANC J, SHUKLA A. The effects of polyurea coatings on the underwater explosive response of composite plates [M]//GOPALAKRISHNAN S, RAJAPAKSE Y. Blast Mitigation Strategies in Marine Composite and Sandwich Structures. Singapore: Springer, 2018: 53–72. DOI: 10.1007/978-981-10-7170-6_3.
|
| [71] |
LEBLANCD J M. Response of composite materials to dynamic and low temperature environments [D]. Rhode Island: University of Rhode Island, 2019: 52–58. DOI: 10.23860/thesis-leblanc-james-2019.
|
| [72] |
LEBLANC J, GAUCH E, JAVIER C, et al. The response of composite materials subjected to underwater explosive loading: experimental and computational studies [M]//LEE S W. Advances in Thick Section Composite and Sandwich Structures: an Anthology of ONR-Sponsored Research. Cham: Springer, 2020: 43–83. DOI: 10.1007/978-3-030-31065-3_2.
|
| [73] |
CHENNAMSETTY A R K, LEBLANC J, ABOTULA S, et al. Dynamic response of Hastelloy® X plates under oblique shocks: Experimental and numerical studies [J]. International Journal of Impact Engineering, 2015, 85: 97–109. DOI: 10.1016/j.ijimpeng.2015.06.016.
|
| [74] |
AUNE V, FAGERHOLT E, LANGSETH M, et al. A shock tube facility to generate blast loading on structures [J]. International Journal of Protective Structures, 2016, 7(3): 340–366. DOI: 10.1177/2041419616666236.
|
| [75] |
AUNE V, VALSAMOS G, CASADEI F, et al. On the dynamic response of blast-loaded steel plates with and without pre-formed holes [J]. International Journal of Impact Engineering, 2017, 108: 27–46. DOI: 10.1016/j.ijimpeng.2017.04.001.
|
| [76] |
AUNE V, VALSAMOS G, CASADEI F, et al. Numerical study on the structural response of blast-loaded thin aluminium and steel plates [J]. International Journal of Impact Engineering, 2017, 99: 131–144. DOI: 10.1016/j.ijimpeng.2016.08.010.
|
| [77] |
AUNE V, VALSAMOS G, CASADEI F, et al. Fluid-structure interaction effects during the dynamic response of clamped thin steel plates exposed to blast loading [J]. International Journal of Mechanical Sciences, 2021, 195: 106263. DOI: 10.1016/j.ijmecsci.2020.106263.
|
| [78] |
STOLZ A, FISCHER K, ROLLER C, et al. Dynamic bearing capacity of ductile concrete plates under blast loading [J]. International Journal of Impact Engineering, 2014, 69: 25–38. DOI: 10.1016/j.ijimpeng.2014.02.008.
|
| [79] |
ELVELI B S, IDDBERG M B, BØRVIK T, et al. On the strength–ductility trade-off in thin blast-loaded steel plates with and without initial defects—An experimental study [J]. Thin-Walled Structures, 2022, 171: 108787. DOI: 10.1016/j.tws.2021.108787.
|
| [80] |
ELVELI B S, BERSTAD T, BØRVIK T, et al. Performance of thin blast-loaded steel plates after ballistic impact from small-arms projectiles [J]. International Journal of Impact Engineering, 2023, 173: 104437. DOI: 10.1016/j.ijimpeng.2022.104437.
|
| [81] |
LI Y, JIANG X W, TANG Y, et al. Investigation on the dynamic response of steel plates with a pre-formed hole loaded by underwater shock wave [J]. Thin-Walled Structures, 2025, 210: 112926. DOI: 10.1016/j.tws.2025.112926.
|
| [82] |
王正国, 孙立英, 杨志焕, 等. 系列生物激波管的研制与应用 [J]. 爆炸与冲击, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.
WANG Z G, SUN L Y, YANG Z H, et al. The design production and application of a series of bio-shock tubes [J]. Explosion and Shock Waves, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.
|
| [83] |
王峰, 杨志焕, 朱佩芳, 等. 高原冲击伤伤情特点的实验研究 [J]. 创伤外科杂志, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.
WANG F, YANG Z H, ZHU P F, et al. Experimental study on characteristics of blast injury at high altitude [J]. Journal of Traumatic Surgery, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.
|
| [84] |
袁丹凤, 杨傲, 麻超, 等. 冲击波强度与幼年大鼠肺冲击伤程度的量效关系 [J]. 中国医学物理学杂志, 2021, 38(6): 780–784. DOI: 10.3969/j.issn.1005-202X.2021.06.022.
YUAN D F, YANG A, MA C, et al. Dose-effect relationship between shock wave intensity and blast lung injury in juvenile rats [J]. Chinese Journal of Medical Physics, 2021, 38(6): 780–784. DOI: 10.3969/j.issn.1005-202X.2021.06.022.
|
| [85] |
JIANG S S, CAI W, XIE J, et al. Realization of a shock-tube facility to study the Richtmyer–Meshkov instability driven by a strong shock wave [J]. Review of Scientific Instruments, 2024, 95(8): 085114. DOI: 10.1063/5.0217768.
|
| [86] |
BURRELL R P, AOUDE H, SAATCIOGLU M. Response of SFRC columns under blast loads [J]. Journal of Structural Engineering, 2015, 141(9): 04014209. DOI: 10.1061/(ASCE)ST.1943-541X.0001186.
|
| [87] |
STOLZ A, MILLON O, KLOMFASS A. Analysis of the resistance of structural components to explosive loading by shock-tube tests and SDOF models [J]. Chemical Engineering Transactions, 2016, 48: 151–156. DOI: 10.3303/CET1648026.
|
| [88] |
GAN E C J, REMENNIKOV A, RITZEL D, et al. Approximating a far-field blast environment in an advanced blast simulator for explosion resistance testing [J]. International Journal of Protective Structures, 2020, 11(4): 468–493. DOI: 10.1177/2041419620911133.
|
| [89] |
GAN E C J. Experimental and numerical investigation of shock wave propagation in an advanced blast simulator [D]. New South Wales: University of Wollongong, 2021: 89-179.
|
| [90] |
GAN E C J, REMENNIKOV A, RITZEL D. Blast waveform tailoring using controlled venting in blast simulators and shock tubes [J]. Defence Technology, 2024, 37: 14–26. DOI: 10.1016/j.dt.2023.11.026.
|
| [91] |
程帅, 童念雪, 刘文祥, 等. 基于高压气体驱动的爆炸波模拟激波管冲击波衰减历程控制方法 [J]. 爆炸与冲击, 2024, 44(5): 052201. DOI: 10.11883/bzycj-2023-0094.
CHENG S, TONG N X, LIU W X, et al. A control method for attenuation history of shock wave generated by blast simulation shock tube based on high pressure gas driving technic [J]. Explosion and Shock Waves, 2024, 44(5): 052201. DOI: 10.11883/bzycj-2023-0094.
|
| [92] |
BALAN G S, RAJ S A. A review on shock tubes with multitudinous applications [J]. International Journal of Impact Engineering, 2023, 172: 104406. DOI: 10.1016/j.ijimpeng.2022.104406.
|
| [93] |
ANDREOTTI R, COLOMBO M, GUARDONE A, et al. Performance of a shock tube facility for impact response of structures [J]. International Journal of Non-Linear Mechanics, 2015, 72: 53–66. DOI: 10.1016/j.ijnonlinmec.2015.02.010.
|
| [94] |
HOUAS L, BIAMINO L, MARIANI C, et al. The effects that changes in the diaphragm aperture have on the resulting shock tube flow [J]. Shock Waves, 2012, 22(4): 287–293. DOI: 10.1007/s00193-012-0372-0.
|
| [95] |
KIM I, PARK G. Experimental study of oxygen catalytic recombination on a smooth surface in a shock tube [J]. Applied Thermal Engineering, 2019, 156: 678–691. DOI: 10.1016/j.applthermaleng.2019.04.054.
|
| [96] |
KIM I, YANG Y, PARK G. Effect of titanium surface roughness on oxygen catalytic recombination in a shock tube [J]. Acta Astronautica, 2020, 166: 260–269. DOI: 10.1016/j.actaastro.2019.10.030.
|
| [97] |
HEITZER J. Dynamic interaction of a plate and an impactor [J]. Computers & Structures, 1996, 60(5): 837–848. DOI: 10.1016/0045-7949(95)00445-9.
|
| [98] |
KRAUTHAMMER T. Modern protective structures [M]. Boca Raton: CRC Press, 2008: 24–103. DOI: 10.1201/9781420015423.
|
| [99] |
JONES N. Structural impact [M]. Cambridge: Cambridge University Press, 2012: 377–424. DOI: 10.1017/CBO9780511820625.
|
| [100] |
孙桂娟, 高伟亮, 刘瑞朝, 等. 爆炸近区荷载模拟试验技术研究进展 [J]. 防护工程, 2019, 41(4): 66–73.
SUN G J, GAO W L, LIU R Z, et al. Research progress of simulation test technology of load in near-field of explosion [J]. Protective Engineering, 2019, 41(4): 66–73.
|
| [101] |
XIAN W, CHEN W S, HAO H, et al. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact [J]. Thin-Walled Structures, 2021, 160: 107409. DOI: 10.1016/j.tws.2020.107409.
|
| [102] |
王宇, 严鹏志, 范鹏贤. 岩土中爆炸冲击荷载的落锤模拟试验研究 [J]. 陆军工程大学学报, 2023, 2(6): 60–67. DOI: 10.12018/j.issn.2097-0730.20230525001.
WANG Y, YAN P Z, FAN P X. Physical simulation of explosion impact load in geomaterials by drop hammers [J]. Journal of Army Engineering University of PLA, 2023, 2(6): 60–67. DOI: 10.12018/j.issn.2097-0730.20230525001.
|
| [103] |
李腾飞, 钟冬望, 何理, 等. 基于落锤-弹簧碰撞系统的燃气爆炸载荷模拟加载方法研究 [J]. 力学与实践, 2024, 46(4): 796–802. DOI: 10.6052/1000-0879-23-461.
LI T F, ZHONG D W, HE L, et al. Research on gas explosion load simulation loading method based on drop weight-spring collision system [J]. Mechanics in Engineering, 2024, 46(4): 796–802. DOI: 10.6052/1000-0879-23-461.
|
| [104] |
程帅, 陈博, 刘文祥, 等. 基于落锤实验平台的爆炸载荷模拟装置原理性设计 [J]. 现代应用物理, 2016, 7(4): 041002. DOI: 10.3969/j.issn.2095-6223.2016.04.010.
CHENG S, CHEN B, LIU W X, et al. Theoretical design of an explosive loading analogue device based on drop hammer test system [J]. Modern Applied Physics, 2016, 7(4): 041002. DOI: 10.3969/j.issn.2095-6223.2016.04.010.
|
| [105] |
任佳, 刘小川, 杨建波, 等. 防雷座椅台架试验冲击波形模拟技术 [J]. 科学技术与工程, 2020, 20(33): 13673–13679. DOI: 10.3969/j.issn.1671-1815.2020.33.023.
REN J, LIU X C, YANG J B, et al. Waveform simulation technology for drop test of the mine protected seat [J]. Science Technology and Engineering, 2020, 20(33): 13673–13679. DOI: 10.3969/j.issn.1671-1815.2020.33.023.
|
| [106] |
BOSCH K, HARRIS K, CLARK D, et al. Blast mitigation seat analysis-drop tower data review: SAE Technical Paper 2024-01-3496 [R]. Warren, Michigan, USA: SAE, 2014: 2. DOI: 10.4271/2024-01-3496.
|
| [107] |
CHENG M, DIONNE J P, MAKRIS A. On drop-tower test methodology for blast mitigation seat evaluation [J]. International Journal of Impact Engineering, 2010, 37(12): 1180–1187. DOI: 10.1016/j.ijimpeng.2010.08.002.
|
| [108] |
傅耀宇, 牛善田, 闫际宇, 等. 模拟爆炸冲击载荷的防雷座椅跌落试验研究 [J]. 兵器装备工程学报, 2023, 44(6): 154–160. DOI: 10.11809/bqzbgcxb2023.06.021.
FU Y Y, NIU S T, YAN J Y, et al. Drop tests of lightning protection seats in simulation of explosion impact load [J]. Journal of Ordnance Equipment Engineering, 2023, 44(6): 154–160. DOI: 10.11809/bqzbgcxb2023.06.021.
|
| [109] |
WOLFSONO J C. Blast damage mitigation of steel structures from near- contact charges [D]. San Diego: University of California, 2008: 30–75.
|
| [110] |
OESTERLE M G. Blast simulator wall tests: experimental methods and mitigation strategies for reinforced concrete and concrete masonry [D]. San Diego: University of California, 2009: 78–151.
|
| [111] |
STEWART L K. Experimental and computational methods for steel columns subjected to blast loading [J]. WIT Transactions on The Built Environment, 2012, 126: 157–168. DOI: 10.2495/SU120141.
|
| [112] |
STEWART L K, FREIDENBERG A, RODRIGUEZ-NIKL T, et al. Methodology and validation for blast and shock testing of structures using high-speed hydraulic actuators [J]. Engineering Structures, 2014, 70: 168–180. DOI: 10.1016/j.engstruct.2014.03.027.
|
| [113] |
STEWART L K. Computational modeling of steel columns subjected to experimentally simulated blasts [J]. International Journal of Computational Methods and Experimental Measurements, 2014, 2(3): 225–242. DOI: 10.2495/CMEM-V2-N3-235-242.
|
| [114] |
FREIDENBERG A, LEE C W, DURANT B, et al. Characterization of the Blast Simulator elastomer material using a pseudo-elastic rubber model [J]. International Journal of Impact Engineering, 2013, 60: 58–66. DOI: 10.1016/j.ijimpeng.2013.04.009.
|
| [115] |
FREIDENBERG A, AVIRAM A, STEWART L K, et al. Demonstration of tailored impact to achieve blast-like loading [J]. International Journal of Impact Engineering, 2014, 71: 97–105. DOI: 10.1016/j.ijimpeng.2014.04.006.
|
| [116] |
PERONI M, SOLOMOS G, CAVERZAN A, et al. Blast simulator project: first tests on reinforced concrete beams [R]. Luxembourg: Publications Office of the European Union, 2015. DOI: 10.2788/598353.
|
| [117] |
XIONG Z X, WANG W, YU G C, et al. Experimental and numerical study of non-explosive simulated blast loading on reinforced concrete slabs [J]. Materials, 2023, 16(12): 4410. DOI: 10.3390/ma16124410.
|
| [118] |
姚术健, 王延靖, 陈奕恺, 等. 基于二氧化碳相变的模拟爆炸加载试验系统及方法: CN202411061136.3 [P]. 2024-10-22.
YAO S J, WANG Y J, CHEN Y K, et al. Simulated explosion loading test system and method based on carbon dioxide phase change: CN202411061136.3 [P]. 2024-10-22.
|