• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
WU Hao, CEN Guohua, CHENG Yuehua. Penetration effectiveness analysis of AGM-183A hypervelocity weapon warhead and design of concrete shield[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0041
Citation: WU Hao, CEN Guohua, CHENG Yuehua. Penetration effectiveness analysis of AGM-183A hypervelocity weapon warhead and design of concrete shield[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0041

Penetration effectiveness analysis of AGM-183A hypervelocity weapon warhead and design of concrete shield

doi: 10.11883/bzycj-2025-0041
  • Received Date: 2025-02-14
  • Rev Recd Date: 2025-05-09
  • Available Online: 2025-05-14
  • With the rapid development of hypervelocity weapons, analyzing the penetration effectiveness of hypervelocity weapon warheads on concrete shields is significant for the design of newly-built protective structures and the safety evaluation of as-built protective structures. Focusing on the penetration performance of AGM-183A hypervelocity weapon warhead against three typical shields: normal strength concrete (NSC), ultra-high performance concrete (UHPC), and corundum rubble concrete (CRC), firstly, the reliability of the numerical algorithms, mesh size, and material model parameters used in the finite element analysis method was fully validated by comparing the experimental and simulation results of three types of target subjected to penetration of steel/tungsten alloy projectiles. Subsequently, a numerical analysis method for the prototype scenario was established based on a mesh transition strategy equivalent to penetration depth and recovered projectile length. Finally, a series of simulations were conducted for the AGM-183A hypervelocity weapon warhead penetrating the aforementioned three shields at Ma ranging from 3 to 8. The results indicate that: (1) the AGM-183A hypervelocity weapon warhead reaches maximum penetration depth when NSC, UHPC, and CRC shields subjected to penetration at Ma=4, Ma=4, and Ma=3, respectively, with depths of 4.26, 3.74, and 1.00 m. Due to instability phenomena of projectiles, such as fractures at the junction between the head and body caused by local stress concentration, further increases in penetration velocity lead to a decrease in penetration effectiveness; (2) compared with the combined penetration and explosion damage depths of conventional sound speed penetrating warheads SDB, WDU-43/B, and BLU-109/B, the penetration depths induced by AGM-183A into NSC, UHPC, and CRC shields are 3.2, 1.6, and 1.8 times, 4.7, 2.1, and 2.2 times, and 3.4, 1.3, and 1.5 times higher, respectively; (3) the recommended design thicknesses of the three shields against the AGM-183A hypervelocity weapon warhead are 8.01, 7.03, and 1.88 m, respectively. The UHPC shield shows no significant improvement subjected to hypervelocity penetration compared with the NSC shield. Comparatively, the CRC shield is recommended for shield design, which can be effectively subjected to both conventional subsonic and hypervelocity impacts.
  • loading
  • [1]
    高天运, 马兰, 齐建成. 外军高超声速武器作战及其目标杀伤链构建分析 [J]. 战术导弹技术, 2024(3): 136–147. DOI: 10.16358/j.issn.1009-1300.20230153.

    GAO T Y, MA L, QI J C. Analysis of combat forms and targeting kill chain of foreign hypersonic weapons [J]. Tactical Missile Technology, 2024(3): 136–147. DOI: 10.16358/j.issn.1009-1300.20230153.
    [2]
    邓国强, 王安宝, 张蒙蒙, 等. “匕首”导弹高速侵爆战斗部毁伤威力推测 [J]. 防护工程, 2022, 44(4): 42–47. DOI: 10.3969/j.issn.1674-1854.2022.04.007.

    DENG G Q, WANG A B, ZHANG M M, et al. Estimation of damage power of the high-speed penetrating-explosion warhead of Kinzhal missile [J]. Protective Engineering, 2022, 44(4): 42–47. DOI: 10.3969/j.issn.1674-1854.2022.04.007.
    [3]
    FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [4]
    KONG X Z, WU H, FANG Q, et al. Projectile penetration into mortar targets with a broad range of striking velocities: test and analyses [J]. International Journal of Impact Engineering, 2017, 106: 18–29. DOI: 10.1016/j.ijimpeng.2017.02.022.
    [5]
    ZHANG S B, KONG X Z, FANG Q, et al. The maximum penetration depth of hypervelocity projectile penetration into concrete targets: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 181: 104734. DOI: 10.1016/j.ijimpeng.2023.104734.
    [6]
    王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.

    WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
    [7]
    钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.

    QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.
    [8]
    钱秉文, 周刚, 李进, 等. 钨合金柱形弹超高速撞击水泥砂浆靶的侵彻深度研究 [J]. 爆炸与冲击, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.

    QIAN B W, ZHOU G, LI J, et al. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target [J]. Explosion and Shock Waves, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.
    [9]
    钱秉文, 周刚, 李名锐, 等. 弹体材料性能对超高速侵彻深度的影响规律 [J]. 爆炸与冲击, 2024, 44(10): 103302. DOI: 10.11883/bzycj-2022-0310.

    QIAN B W, ZHOU G, LI M R, et al. Influences of material properties of a projectile on hypervelocity penetration depth [J]. Explosion and Shock Waves, 2024, 44(10): 103302. DOI: 10.11883/bzycj-2022-0310.
    [10]
    钱秉文, 周刚, 李名锐, 等. 高强钢弹体高速侵彻混凝土靶的刚体临界侵彻速度研究 [J]. 爆炸与冲击, 2024, 44(10): 103301. DOI: 10.11883/bzycj-2022-0309.

    QIAN B W, ZHOU G, LI M R, et al. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities [J]. Explosion and Shock Waves, 2024, 44(10): 103301. DOI: 10.11883/bzycj-2022-0309.
    [11]
    周刚, 李名锐, 文鹤鸣, 等. 钨合金弹体对混凝土靶的超高速侵彻机理 [J]. 爆炸与冲击, 2021, 41(2): 021407. DOI: 10.11883/bzycj-2020-0304.

    ZHOU G, LI M R, WEN H M, et al. Mechanism on hypervelocity penetration of a tungsten alloy projectile into a concrete target [J]. Explosion and Shock Waves, 2021, 41(2): 021407. DOI: 10.11883/bzycj-2020-0304.
    [12]
    武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
    [13]
    WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510- 1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [14]
    薛建锋, 沈培辉, 王晓鸣. 不同头部形状弹体侵彻混凝土的试验研究 [J]. 兵工自动化, 2016, 35(2): 75–78. DOI: 10.7690/bgzdh.2016.02.019.

    XUE J F, SHEN P H, WANG X M. An experimental study on projectiles penetrating into concrete targets with different nose shapes [J]. Ordnance Industry Automation, 2016, 35(2): 75–78. DOI: 10.7690/bgzdh.2016.02.019.
    [15]
    周忠彬, 马田, 赵永刚, 等. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验 [J]. 高压物理学报, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841.

    ZHOU Z B, MA T, ZHAO Y G, et al. Comparative experiment on structural damage of supersonic projectiles with different metal materials penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841.
    [16]
    董凯, 江坤, 王浩, 等. 大质量弹丸高速侵彻混凝土质量侵蚀试验研究 [J]. 振动与冲击, 2024, 43(12): 148–155. DOI: 10.13465/j.cnki.jvs.2024.12.017.

    DONG K, JIANG K, WANG H, et al. An experimental study on mass erosion for high speed and high mass projectile penetrate concrete [J]. Journal of Vibration and Shock, 2024, 43(12): 148–155. DOI: 10.13465/j.cnki.jvs.2024.12.017.
    [17]
    汪斌, 曹仁义, 谭多望. 大质量高速动能弹侵彻钢筋混凝土的实验研究 [J]. 爆炸与冲击, 2013, 33(1): 98–102. DOI: 10.11883/1001-1455(2013)01-0098-05.

    WANG B, CAO R Y, TAN D W. Experimental study on penetration of reinforced concrete by a high-speed penetrator with large mass [J]. Explosion and Shock Waves, 2013, 33(1): 98–102. DOI: 10.11883/1001-1455(2013)01-0098-05.
    [18]
    邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.

    DENG G Q, YANG X M. Numerical simulation of damage effect of hyper velocity weapon on ground target [J]. Science & Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
    [19]
    张山豹, 孔祥振, 方秦, 等. 弹体超高速侵彻石灰岩靶体地冲击的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013302. DOI: 10.11883/bzycj-2021-0007.

    ZHANG S B, KONG X Z, FANG Q, et al. Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target [J]. Explosion and Shock Waves, 2022, 42(1): 013302. DOI: 10.11883/bzycj-2021-0007.
    [20]
    李争, 刘元雪, 胡明, 等. “上帝之杖”天基动能武器毁伤效应评估 [J]. 振动与冲击, 2016, 35(18): 159–164,180. DOI: 10.13465/j.cnki.jvs.2016.14.026.

    LI Z, LIU Y X, HU M, et al. Damage effect evaluation of God stick space-based kinetic energy weapons [J]. Journal of Vibration and Shock, 2016, 35(18): 159–164,180. DOI: 10.13465/j.cnki.jvs.2016.14.026.
    [21]
    程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.

    CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
    [22]
    程月华, 吴昊, 岑国华, 等. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计 [J]. 爆炸与冲击, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061.

    CHENG Y H, WU H, CEN G H, et al. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061.
    [23]
    吴昊, 张瑜, 程月华, 等. 典型战斗部侵彻爆炸下块石混凝土的遮弹层设计 [J]. 爆炸与冲击, 2025, 45(4): 043302. DOI: 10.11883/bzycj-2024-0136.

    WU H, ZHANG Y, CHENG Y H, et al. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(4): 043302. DOI: 10.11883/bzycj-2024-0136.
    [24]
    吴昊, 岑国华, 程月华, 等. 基于战斗部侵彻动爆一体化效应的遮弹层设计 [J]. 爆炸与冲击, 2025, 45(5): 053301. DOI: 10.11883/bzycj-2024-0244.

    WU H, CEN G H, CHENG Y H, et al. Design of shield based on integrated effect of penetration and moving charge explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(5): 053301. DOI: 10.11883/bzycj-2024-0244.
    [25]
    钱秉文, 周刚, 陈春林, 等. 超高速撞击条件下混凝土靶体内应力波的测量和分析 [J]. 爆炸与冲击, 2025, 45(5): 054101. DOI: 10.11883/bzycj-2024-0181.

    QIAN B W, ZHOU G, CHEN C L, et al. Measurement and analysis of stress waves in concrete target under hypervelocity impact [J]. Explosion and Shock Waves, 2025, 45(5): 054101. DOI: 10.11883/bzycj-2024-0181.
    [26]
    WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [27]
    曾宏刚, 廖孟豪. 美国AGM-183A机载高超声速助推滑翔导弹技术方案及主要性能研判 [J]. 飞航导弹, 2020(6): 20–22, 34. DOI: 10.16338/j.issn.1009-1319.20200826.
    [28]
    石浩天. 超高速侵彻战斗部装药结构设计与安定性试验研究 [D]. 太原: 中北大学, 2024: 28–32. DOI: 10.27470/d.cnki.ghbgc.2024.001548.

    SHI H T. Structural design and stability test of ultra-high velocity penetrating combatant charge [D]. Taiyuan: North University of China, 2024: 28–32. DOI: 10.27470/d.cnki.ghbgc.2024.001548.
    [29]
    唐德高, 贺虎成, 陈向欣, 等. 刚玉块石混凝土抗弹丸侵彻效应试验研究 [J]. 振动与冲击, 2005, 24(6): 37–39. DOI: 10.3969/j.issn.1000-3835.2005.06.011.

    TANG D G, HE H C, CHEN X X, et al. Experimental study on corundum-rubble concrete against projectile [J]. Journal of Vibration and Shock, 2005, 24(6): 37–39. DOI: 10.3969/j.issn.1000-3835.2005.06.011.
    [30]
    唐曾智, 郭东, 侯晓峰, 等. 超高强堆石混凝土抗侵彻性能研究 [J]. 防护工程, 2024, 46(4): 9–12. DOI: 10.3969/j.issn.1674-1854.2024.04.003.

    TANG Z Z, GUO D, HOU X F, et al. Research on penetration resistance of ultra-high strength rock-filled concrete [J]. Protective Engineering, 2024, 46(4): 9–12. DOI: 10.3969/j.issn.1674-1854.2024.04.003.
    [31]
    位国旭, 崔浩, 周昊, 等. 钨合金弹丸侵彻钢靶的数值模拟方法 [J]. 爆炸与冲击, 2025, 45(8): 084202. DOI: 10.11883/bzycj-2024-0147.

    WEI G X, CUI H, ZHOU H, et al. Numerical simulation method for tungsten alloy projectile penetration into steel target [J]. Explosion and Shock Waves, 2025, 45(8): 084202. DOI: 10.11883/bzycj-2024-0147.
    [32]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. The Hague: International Ballistics Society, 1983: 541–547.
    [33]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [34]
    HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//Proceedings of the 14th International Symposium on Ballistics. Québec City: American Defense Preparedness Association, 1993: 591–600.
    [35]
    任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.

    REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.
    [36]
    REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227.
    [37]
    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [38]
    方秦, 罗曼, 张锦华, 等. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.

    FANG Q, LUO M, ZHANG J H, et al. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.
    [39]
    贺虎成, 刘晓华, 唐德高. 弹体冲击效应试验的数值模拟分析 [J]. 振动与冲击, 2007, 26(11): 91–94. DOI: 10.13465/j.cnki.jvs.2007.11.030.

    HE H C, LIU X H, TANG D G. Numerical simulation of impact effect experiment of projectiles [J]. Journal of Vibration and Shock, 2007, 26(11): 91–94. DOI: 10.13465/j.cnki.jvs.2007.11.030.
    [40]
    陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.

    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
    [41]
    马坤, 李名锐, 陈春林, 等. 修正金属本构模型在超高速撞击模拟中的应用 [J]. 爆炸与冲击, 2022, 42(9): 091406. DOI: 10.11883/bzycj-2021-0315.

    MA K, LI M R, CHEN C L, et al. The application of a modified constitutive model of metals in the simulation of hypervelocity impact [J]. Explosion and Shock Waves, 2022, 42(9): 091406. DOI: 10.11883/bzycj-2021-0315.
    [42]
    林远志, 侯海量. 平头圆柱装药弹体静态爆炸破碎与飞散特性 [J]. 海军工程大学学报, 2025, 37(1): 20–28. DOI: 10.7495/j.issn.1009-3486.2025.01.004.

    LIN Y Z, HOU H L. Exploration of explosive fragmentation and dispersion characteristics of static flat-headed cylindrical charge projectile [J]. Journal of Naval University of Engineering., 2025, 37(1): 20–28. DOI: 10.7495/j.issn.1009-3486.2025.01.004.
    [43]
    CHENG Y H, WU H, JIANG P F, et al. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact [J]. Thin-Walled Structures, 2023, 183: 110350. DOI: 10.1016/j.tws.2022.110350.
    [44]
    MCINTOSH G. The Johnson-Holmquist ceramic model as used in LS-DYNA2D: DREV-TM-9822 [R]. Valcartier: Defence Research Establishment Valcartier, 1998.
    [45]
    GAZONAS G A. Implementation of the Johnson-Holmquist Ⅱ (JH-2) constitutive model into DYNA3D: ARL-TR-2699 [R]. Aberdeen Proving Ground: Army Research Laboratory, 2002.
    [46]
    王可慧, 耿宝刚, 初哲, 等. 弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究 [J]. 高压物理学报, 2014, 28(1): 61–68. DOI: 10.11858/gywlxb.2014.01.010.

    WANG K H, GENG B G, CHU Z, et al. Experimental studies on structural response and mass loss of high-velocity projectiles penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 61–68. DOI: 10.11858/gywlxb.2014.01.010.
    [47]
    韩明海, 刘闯, 李鹏程, 等. 弹体高速侵彻花岗岩靶体的结构响应特性 [J]. 爆炸与冲击, 2025, 45(1): 013302. DOI: 10.11883/bzycj-2024-0145.

    HAN M H, LIU C, LI P C, et al. A study on structural response characteristics of projectile penetrating on granite target [J]. Explosion and Shock Waves, 2025, 45(1): 013302. DOI: 10.11883/bzycj-2024-0145.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(7)

    Article Metrics

    Article views (623) PDF downloads(171) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return