| Citation: | WU Hao, CEN Guohua, CHENG Yuehua. Penetration effectiveness analysis of AGM-183A hypervelocity weapon warhead and design of concrete shield[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0041 |
| [1] |
高天运, 马兰, 齐建成. 外军高超声速武器作战及其目标杀伤链构建分析 [J]. 战术导弹技术, 2024(3): 136–147. DOI: 10.16358/j.issn.1009-1300.20230153.
GAO T Y, MA L, QI J C. Analysis of combat forms and targeting kill chain of foreign hypersonic weapons [J]. Tactical Missile Technology, 2024(3): 136–147. DOI: 10.16358/j.issn.1009-1300.20230153.
|
| [2] |
邓国强, 王安宝, 张蒙蒙, 等. “匕首”导弹高速侵爆战斗部毁伤威力推测 [J]. 防护工程, 2022, 44(4): 42–47. DOI: 10.3969/j.issn.1674-1854.2022.04.007.
DENG G Q, WANG A B, ZHANG M M, et al. Estimation of damage power of the high-speed penetrating-explosion warhead of Kinzhal missile [J]. Protective Engineering, 2022, 44(4): 42–47. DOI: 10.3969/j.issn.1674-1854.2022.04.007.
|
| [3] |
FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
|
| [4] |
KONG X Z, WU H, FANG Q, et al. Projectile penetration into mortar targets with a broad range of striking velocities: test and analyses [J]. International Journal of Impact Engineering, 2017, 106: 18–29. DOI: 10.1016/j.ijimpeng.2017.02.022.
|
| [5] |
ZHANG S B, KONG X Z, FANG Q, et al. The maximum penetration depth of hypervelocity projectile penetration into concrete targets: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 181: 104734. DOI: 10.1016/j.ijimpeng.2023.104734.
|
| [6] |
王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
|
| [7] |
钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.
QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.
|
| [8] |
钱秉文, 周刚, 李进, 等. 钨合金柱形弹超高速撞击水泥砂浆靶的侵彻深度研究 [J]. 爆炸与冲击, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.
QIAN B W, ZHOU G, LI J, et al. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target [J]. Explosion and Shock Waves, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.
|
| [9] |
钱秉文, 周刚, 李名锐, 等. 弹体材料性能对超高速侵彻深度的影响规律 [J]. 爆炸与冲击, 2024, 44(10): 103302. DOI: 10.11883/bzycj-2022-0310.
QIAN B W, ZHOU G, LI M R, et al. Influences of material properties of a projectile on hypervelocity penetration depth [J]. Explosion and Shock Waves, 2024, 44(10): 103302. DOI: 10.11883/bzycj-2022-0310.
|
| [10] |
钱秉文, 周刚, 李名锐, 等. 高强钢弹体高速侵彻混凝土靶的刚体临界侵彻速度研究 [J]. 爆炸与冲击, 2024, 44(10): 103301. DOI: 10.11883/bzycj-2022-0309.
QIAN B W, ZHOU G, LI M R, et al. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities [J]. Explosion and Shock Waves, 2024, 44(10): 103301. DOI: 10.11883/bzycj-2022-0309.
|
| [11] |
周刚, 李名锐, 文鹤鸣, 等. 钨合金弹体对混凝土靶的超高速侵彻机理 [J]. 爆炸与冲击, 2021, 41(2): 021407. DOI: 10.11883/bzycj-2020-0304.
ZHOU G, LI M R, WEN H M, et al. Mechanism on hypervelocity penetration of a tungsten alloy projectile into a concrete target [J]. Explosion and Shock Waves, 2021, 41(2): 021407. DOI: 10.11883/bzycj-2020-0304.
|
| [12] |
武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
|
| [13] |
WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510-
|
| [14] |
薛建锋, 沈培辉, 王晓鸣. 不同头部形状弹体侵彻混凝土的试验研究 [J]. 兵工自动化, 2016, 35(2): 75–78. DOI: 10.7690/bgzdh.2016.02.019.
XUE J F, SHEN P H, WANG X M. An experimental study on projectiles penetrating into concrete targets with different nose shapes [J]. Ordnance Industry Automation, 2016, 35(2): 75–78. DOI: 10.7690/bgzdh.2016.02.019.
|
| [15] |
周忠彬, 马田, 赵永刚, 等. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验 [J]. 高压物理学报, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841.
ZHOU Z B, MA T, ZHAO Y G, et al. Comparative experiment on structural damage of supersonic projectiles with different metal materials penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841.
|
| [16] |
董凯, 江坤, 王浩, 等. 大质量弹丸高速侵彻混凝土质量侵蚀试验研究 [J]. 振动与冲击, 2024, 43(12): 148–155. DOI: 10.13465/j.cnki.jvs.2024.12.017.
DONG K, JIANG K, WANG H, et al. An experimental study on mass erosion for high speed and high mass projectile penetrate concrete [J]. Journal of Vibration and Shock, 2024, 43(12): 148–155. DOI: 10.13465/j.cnki.jvs.2024.12.017.
|
| [17] |
汪斌, 曹仁义, 谭多望. 大质量高速动能弹侵彻钢筋混凝土的实验研究 [J]. 爆炸与冲击, 2013, 33(1): 98–102. DOI: 10.11883/1001-1455(2013)01-0098-05.
WANG B, CAO R Y, TAN D W. Experimental study on penetration of reinforced concrete by a high-speed penetrator with large mass [J]. Explosion and Shock Waves, 2013, 33(1): 98–102. DOI: 10.11883/1001-1455(2013)01-0098-05.
|
| [18] |
邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
DENG G Q, YANG X M. Numerical simulation of damage effect of hyper velocity weapon on ground target [J]. Science & Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
|
| [19] |
张山豹, 孔祥振, 方秦, 等. 弹体超高速侵彻石灰岩靶体地冲击的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013302. DOI: 10.11883/bzycj-2021-0007.
ZHANG S B, KONG X Z, FANG Q, et al. Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target [J]. Explosion and Shock Waves, 2022, 42(1): 013302. DOI: 10.11883/bzycj-2021-0007.
|
| [20] |
李争, 刘元雪, 胡明, 等. “上帝之杖”天基动能武器毁伤效应评估 [J]. 振动与冲击, 2016, 35(18): 159–164,180. DOI: 10.13465/j.cnki.jvs.2016.14.026.
LI Z, LIU Y X, HU M, et al. Damage effect evaluation of God stick space-based kinetic energy weapons [J]. Journal of Vibration and Shock, 2016, 35(18): 159–164,180. DOI: 10.13465/j.cnki.jvs.2016.14.026.
|
| [21] |
程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
|
| [22] |
程月华, 吴昊, 岑国华, 等. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计 [J]. 爆炸与冲击, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061.
CHENG Y H, WU H, CEN G H, et al. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061.
|
| [23] |
吴昊, 张瑜, 程月华, 等. 典型战斗部侵彻爆炸下块石混凝土的遮弹层设计 [J]. 爆炸与冲击, 2025, 45(4): 043302. DOI: 10.11883/bzycj-2024-0136.
WU H, ZHANG Y, CHENG Y H, et al. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(4): 043302. DOI: 10.11883/bzycj-2024-0136.
|
| [24] |
吴昊, 岑国华, 程月华, 等. 基于战斗部侵彻动爆一体化效应的遮弹层设计 [J]. 爆炸与冲击, 2025, 45(5): 053301. DOI: 10.11883/bzycj-2024-0244.
WU H, CEN G H, CHENG Y H, et al. Design of shield based on integrated effect of penetration and moving charge explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(5): 053301. DOI: 10.11883/bzycj-2024-0244.
|
| [25] |
钱秉文, 周刚, 陈春林, 等. 超高速撞击条件下混凝土靶体内应力波的测量和分析 [J]. 爆炸与冲击, 2025, 45(5): 054101. DOI: 10.11883/bzycj-2024-0181.
QIAN B W, ZHOU G, CHEN C L, et al. Measurement and analysis of stress waves in concrete target under hypervelocity impact [J]. Explosion and Shock Waves, 2025, 45(5): 054101. DOI: 10.11883/bzycj-2024-0181.
|
| [26] |
WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
|
| [27] |
曾宏刚, 廖孟豪. 美国AGM-183A机载高超声速助推滑翔导弹技术方案及主要性能研判 [J]. 飞航导弹, 2020(6): 20–22, 34. DOI: 10.16338/j.issn.1009-1319.20200826.
|
| [28] |
石浩天. 超高速侵彻战斗部装药结构设计与安定性试验研究 [D]. 太原: 中北大学, 2024: 28–32. DOI: 10.27470/d.cnki.ghbgc.2024.001548.
SHI H T. Structural design and stability test of ultra-high velocity penetrating combatant charge [D]. Taiyuan: North University of China, 2024: 28–32. DOI: 10.27470/d.cnki.ghbgc.2024.001548.
|
| [29] |
唐德高, 贺虎成, 陈向欣, 等. 刚玉块石混凝土抗弹丸侵彻效应试验研究 [J]. 振动与冲击, 2005, 24(6): 37–39. DOI: 10.3969/j.issn.1000-3835.2005.06.011.
TANG D G, HE H C, CHEN X X, et al. Experimental study on corundum-rubble concrete against projectile [J]. Journal of Vibration and Shock, 2005, 24(6): 37–39. DOI: 10.3969/j.issn.1000-3835.2005.06.011.
|
| [30] |
唐曾智, 郭东, 侯晓峰, 等. 超高强堆石混凝土抗侵彻性能研究 [J]. 防护工程, 2024, 46(4): 9–12. DOI: 10.3969/j.issn.1674-1854.2024.04.003.
TANG Z Z, GUO D, HOU X F, et al. Research on penetration resistance of ultra-high strength rock-filled concrete [J]. Protective Engineering, 2024, 46(4): 9–12. DOI: 10.3969/j.issn.1674-1854.2024.04.003.
|
| [31] |
位国旭, 崔浩, 周昊, 等. 钨合金弹丸侵彻钢靶的数值模拟方法 [J]. 爆炸与冲击, 2025, 45(8): 084202. DOI: 10.11883/bzycj-2024-0147.
WEI G X, CUI H, ZHOU H, et al. Numerical simulation method for tungsten alloy projectile penetration into steel target [J]. Explosion and Shock Waves, 2025, 45(8): 084202. DOI: 10.11883/bzycj-2024-0147.
|
| [32] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. The Hague: International Ballistics Society, 1983: 541–547.
|
| [33] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
| [34] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//Proceedings of the 14th International Symposium on Ballistics. Québec City: American Defense Preparedness Association, 1993: 591–600.
|
| [35] |
任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.
REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.
|
| [36] |
REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227.
|
| [37] |
JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
|
| [38] |
方秦, 罗曼, 张锦华, 等. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.
FANG Q, LUO M, ZHANG J H, et al. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.
|
| [39] |
贺虎成, 刘晓华, 唐德高. 弹体冲击效应试验的数值模拟分析 [J]. 振动与冲击, 2007, 26(11): 91–94. DOI: 10.13465/j.cnki.jvs.2007.11.030.
HE H C, LIU X H, TANG D G. Numerical simulation of impact effect experiment of projectiles [J]. Journal of Vibration and Shock, 2007, 26(11): 91–94. DOI: 10.13465/j.cnki.jvs.2007.11.030.
|
| [40] |
陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
|
| [41] |
马坤, 李名锐, 陈春林, 等. 修正金属本构模型在超高速撞击模拟中的应用 [J]. 爆炸与冲击, 2022, 42(9): 091406. DOI: 10.11883/bzycj-2021-0315.
MA K, LI M R, CHEN C L, et al. The application of a modified constitutive model of metals in the simulation of hypervelocity impact [J]. Explosion and Shock Waves, 2022, 42(9): 091406. DOI: 10.11883/bzycj-2021-0315.
|
| [42] |
林远志, 侯海量. 平头圆柱装药弹体静态爆炸破碎与飞散特性 [J]. 海军工程大学学报, 2025, 37(1): 20–28. DOI: 10.7495/j.issn.1009-3486.2025.01.004.
LIN Y Z, HOU H L. Exploration of explosive fragmentation and dispersion characteristics of static flat-headed cylindrical charge projectile [J]. Journal of Naval University of Engineering., 2025, 37(1): 20–28. DOI: 10.7495/j.issn.1009-3486.2025.01.004.
|
| [43] |
CHENG Y H, WU H, JIANG P F, et al. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact [J]. Thin-Walled Structures, 2023, 183: 110350. DOI: 10.1016/j.tws.2022.110350.
|
| [44] |
MCINTOSH G. The Johnson-Holmquist ceramic model as used in LS-DYNA2D: DREV-TM-9822 [R]. Valcartier: Defence Research Establishment Valcartier, 1998.
|
| [45] |
GAZONAS G A. Implementation of the Johnson-Holmquist Ⅱ (JH-2) constitutive model into DYNA3D: ARL-TR-2699 [R]. Aberdeen Proving Ground: Army Research Laboratory, 2002.
|
| [46] |
王可慧, 耿宝刚, 初哲, 等. 弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究 [J]. 高压物理学报, 2014, 28(1): 61–68. DOI: 10.11858/gywlxb.2014.01.010.
WANG K H, GENG B G, CHU Z, et al. Experimental studies on structural response and mass loss of high-velocity projectiles penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 61–68. DOI: 10.11858/gywlxb.2014.01.010.
|
| [47] |
韩明海, 刘闯, 李鹏程, 等. 弹体高速侵彻花岗岩靶体的结构响应特性 [J]. 爆炸与冲击, 2025, 45(1): 013302. DOI: 10.11883/bzycj-2024-0145.
HAN M H, LIU C, LI P C, et al. A study on structural response characteristics of projectile penetrating on granite target [J]. Explosion and Shock Waves, 2025, 45(1): 013302. DOI: 10.11883/bzycj-2024-0145.
|