Citation: | ZHANG Yuchun, YANG Wen, ZHANG Kun, JIANG Baoping, YANG Xufeng. Effects of non-premixed CO2 injection pressure on the premixed explosion characteristics of hydrogen-doped natural gas[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0048 |
[1] |
秦勇, 易同生, 周永锋, 等. 煤炭地下气化碳减排技术研究进展与未来探索 [J]. 煤炭学报, 2024, 49(1): 495–512. DOI: 10.13225/j.cnki.jccs.YH23.1329.
QIN Y, YI T S, ZHOU Y F, et al. Research progress and future study of carbon emission reduction for UCG [J]. Journal of China Coal Society, 2024, 49(1): 495–512. DOI: 10.13225/j.cnki.jccs.YH23.1329.
|
[2] |
谭厚章, 王学斌, 杨富鑫, 等. 大型燃煤发电机组低碳技术进展 [J]. 煤炭学报, 2024, 49(2): 1052–1066. DOI: 10.13225/j.cnki.jccs.ZZ24.0060.
TAN H Z, WANG X B, YANG F X, et al. Progress in low carbon technologies for large-scale coal-fired power plants [J]. Journal of China Coal Society, 2024, 49(2): 1052–1066. DOI: 10.13225/j.cnki.jccs.ZZ24.0060.
|
[3] |
洪皓. 煤炭制氢经济适用性分析 [J]. 能源与节能, 2020(12): 82–85. DOI: 10.16643/j.cnki.14-1360/td.2020.12.034.
HONG H. Analysis on economic applicability of hydrogen production from coal [J]. Energy and Energy Conservation, 2020(12): 82–85. DOI: 10.16643/j.cnki.14-1360/td.2020.12.034.
|
[4] |
李刚. 煤制氢技术发展与应用 [J]. 科技创新与生产力, 2024, 45(11): 54–57. DOI: 10.3969/j.issn.1674-9146.2024.11.054.
LI G. Development and application of coal based hydrogen production technology [J]. Sci-tech Innovation and Productivity, 2024, 45(11): 54–57. DOI: 10.3969/j.issn.1674-9146.2024.11.054.
|
[5] |
ERDENER B C, SERGI B, GUERRA O J, et al. A review of technical and regulatory limits for hydrogen blending in natural gas pipelines [J]. International Journal of Hydrogen Energy, 2023, 48(14): 5595–5617. DOI: 10.1016/j.ijhydene.2022.10.254.
|
[6] |
ZHANG H W, ZHAO J, LI J F, et al. Research progress on corrosion and hydrogen embrittlement in hydrogen–natural gas pipeline transportation [J]. Natural Gas Industry B, 2023, 10(6): 570–582.10. DOI: 10.1016/j.ngib.2023.11.001.
|
[7] |
ARAVINDAN M, PRAVEEN KUMAR G, ARULANANDAM M K, et al. Multi-objective optimization and analysis of chemical kinetics properties: Exploring the impact of different hydrogen blending ratios on LPG and methane-air mixtures [J]. Energy Conversion and Management: X, 2024, 22: 100532. DOI: 10.1016/j.ecmx.2024.100532.
|
[8] |
LO BASSO G, PASTORE L M, SGA RAMELLA A, et al. Recent progresses in H2NG blends use downstream power-to-gas policies application: an overview over the last decade [J]. International Journal of Hydrogen Energy, 2024, 51: 424–453. DOI: 10.1016/j.ijhydene.2023.06.141.
|
[9] |
罗振敏, 南凡, 孙亚丽, 等. 掺氢比和CO2对掺氢天然气爆炸特性的影响 [J/OL]. 爆炸与冲击, 2025: 1–14. DOI: 10.11883/bzycj-2024-0282.
LUO Z M, NAN F, SUN Y L, et al. Effects of hydrogen ratio and CO2 on the explosion characteristics of hydrogen-doped natural gas [J/OL]. Explosion and Shock Waves, 2025: 1–14. DOI: 10.11883/bzycj-2024-0282.
|
[10] |
梅亮, 郭进, 黄时凯, 等. 密闭容器内氢气-甲烷-空气的爆炸特性 [J]. 含能材料, 2025, 33(3): 225–235. DOI: 10.11943/CJEM2024186.
MEI L, GUO J, HUANG SK, et al. Explosion Characteristics of Hydrogen-Methane-Air in a Closed Vessel [J]. Chinese Journal of Energetic Materials, 2025, 33(3): 225–235. DOI: 10.11943/CJEM2024186.
|
[11] |
WANG T, LIANG H, LIN J J, et al. The explosion thermal behavior of H2/CH4/air mixtures in a closed 20 L vessel [J]. International Journal of Hydrogen Energy, 2022, 47(2): 1390–1400. DOI: 10.1016/j.ijhydene.2021.10.092.
|
[12] |
MA Q J, ZHANG Q, CHEN J C, et al. Effects of hydrogen on combustion characteristics of methane in air [J]. International Journal of Hydrogen Energy, 2014, 39(21): 11291–11298. DOI: 10.1016/j.ijhydene.2014.05.030.
|
[13] |
LOWESMITH B J, MUMBY C, HANKINSON G, et al. Vented confined explosions involving methane/hydrogen mixtures [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2337–2343. DOI: 10.1016/j.ijhydene.2010.02.084.
|
[14] |
SHANG R X, ZHUANG Z X, YANG Y, et al. Laminar flame speed of H2/CH4/air mixtures with CO2 and N2 dilution [J]. International Journal of Hydrogen Energy, 2022, 47(75): 32315–32329. DOI: 10.1016/j.ijhydene.2022.07.099.
|
[15] |
GONDAL I A. Hydrogen integration in power-to-gas networks [J]. International Journal of Hydrogen Energy, 2019, 44(3): 1803–1815. DOI: 10.1016/j.ijhydene.2018.11.164.
|
[16] |
SHANG R X, ZHANG Y, ZHU M M, et al. Laminar flame speed of CO2 and N2 diluted H2/CO/air flames [J]. International Journal of Hydrogen Energy, 2016, 41(33): 15056–15067. DOI: 10.1016/j.ijhydene.2016.05.064.
|
[17] |
ZHANG C, WEN J, SHEN X B, et al. Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22654–22660. DOI: 10.1016/j.ijhydene.2019.04.032.
|
[18] |
WANG J Y, LIANG Y T, ZHAO Z Z. Effect of N2 and CO2 on explosion behavior of H2-liquefied petroleum gas-air mixtures in a confined space [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23887–23897. DOI: 10.1016/j.ijhydene.2022.05.152.
|
[19] |
WANG D, JI C W, WANG S F, et al. Chemical effects of CO2 dilution on CH4 and H2 spherical flame [J]. Energy, 2019, 185: 316–326. DOI: 10.1016/j.energy.2019.07.032.
|
[20] |
LUO Z M, ZHOU S Y, WANG T, et al. The weakening effect of the inhibition of CO2 on the explosion of HCNG with the increase of hydrogen: Experimental and chemical kinetic research [J]. International Journal of Hydrogen Energy, 2023, 48(82): 32179–32190. DOI: 10.1016/j.ijhydene.2023.05.029.
|
[21] |
WANG M Z, WEN X P, DIAO S T, et al. Effect of obstacle position and equivalence ratio on syngas explosion characteristics [J]. International Journal of Hydrogen Energy, 2024, 56: 735–747. DOI: 10.1016/j.ijhydene.2023.12.235.
|
[22] |
CHRISTOPHE C, GEOFFREY S. On the “Tulip Flame” Phenomenon [J]. Combustion and Flame, 1996(105): 225–238. DOI: 10.1016/0010-2180(95)00195-6.
|
[23] |
XIAO H H, HOUIM R W, ORAN E S. Formation and evolution of distorted tulip flames [J]. Combustion and Flame, 2015, 162(11): 4084–4101. DOI: 10.1016/j.combustflame.2015.08.020.
|
[24] |
XIAO H H, WANG Q S, SHEN X B, et al. An experimental study of distorted tulip flame formation in a closed duct [J]. Combustion and Flame, 2013, 160(9): 1725–1728. DOI: 10.1016/j.combustflame.2013.03.011.
|
[25] |
LI T, HAMPP F, LINDSTEDT R P. Experimental study of turbulent explosions in hydrogen enriched syngas related fuels [J]. Process Safety and Environmental Protection, 2018, 116: 663–676. DOI: 10.1016/j.psep.2018.03.032.
|
[26] |
BYCHKOV V, AKKERMAN V, FRU G, et al. Flame acceleration in the early stages of burning in tubes [J]. Combustion and Flame, 2007, 150(4): 263–276. DOI: 10.1016/j.combustflame.2007.01.004.
|
[27] |
ZHENG K, SONG Z Y, SONG C, et al. Investigation on the explosion of ammonia/hydrogen/air in a closed duct by experiments and numerical simulations [J]. International Journal of Hydrogen Energy, 2024, 79: 1267–1277. DOI: 10.1016/j.ijhydene.2024.07.124.
|
[28] |
GONZALEZ M. Acoustic instability of a premixed flame propagating in a tube [J]. Combustion and Flame, 1996, 107(3): 245–259. DOI: 10.1016/S0010-2180(96)00069-7.
|
[29] |
SHEN X B, HE X C, SUN J H. A comparative study on premixed hydrogen–air and propane–air flame propagations with tulip distortion in a closed duct[J]. Fuel, 2015, 161. DOI: 10.1016/j.fuel.2015.08.043.
|
[30] |
SHEN X B, ZHANG C, XIU G L, et al. Evolution of premixed stoichiometric hydrogen/air flame in a closed duct [J]. Energy, 2019, 176: 265–271. DOI: 10.1016/j.energy.2019.03.193.
|
[31] |
LEYER J C, MANSON N. Development of vibratory flame propagation in short closed tubes and vessels [J]. Symposium (International) on Combustion, 1971, 13(1): 551–558. DOI: 10.1016/S0082-0784(71)80056-5.
|
[32] |
YANG W, YANG X F, ZHANG K, et al. Experimental study on the explosion flame propagation behavior of premixed CH4/H2/air mixtures with inert gas injection [J]. International Journal of Hydrogen Energy, 2024, 84: 106–117. DOI: 10.1016/j.ijhydene.2024.08.120.
|