| Citation: | FENG Bin, GUAN Shaokun, CHEN Li, FANG Qin. Combustible gas leakage and diffusion prediction based on graph neural network[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0154 |
| [1] |
NECCI A, COZZANI V, SPADONI G, et al. Assessment of domino effect: state of the art and research needs [J]. Reliability Engineering & System Safety, 2015, 143: 3–18. DOI: 10.1016/j.ress.2015.05.017.
|
| [2] |
LI X F, CHEN G H, AMYOTTE P, et al. Vulnerability assessment of storage tanks exposed to simultaneous fire and explosion hazards [J]. Reliability Engineering & System Safety, 2023, 230: 108960. DOI: 10.1016/j.ress.2022.108960.
|
| [3] |
李欣, 乐有邦, 张刚, 等. 基于事故调查技术的天然气泄漏爆炸分析——以十堰“6·13”重大燃气爆炸事故为例 [J]. 爆破, 2023, 40(3): 39–45. DOI: 10.3963/j.issn.1001-487X.2023.03.006.
LI X, LE Y B, ZHANG G, et al. Analysis of natural gas explosion based on accident investigation technique——taking Shiyan "6·13" major gas explosion accident as example [J]. Blasting, 2023, 40(3): 39–45. DOI: 10.3963/j.issn.1001-487X.2023.03.006.
|
| [4] |
作业后未有效紧闭 燃气泄漏遇火花爆炸——辽宁省沈阳市和平区太原南街222号“10·21”较大管道燃气泄漏爆炸事故分析 [J]. 吉林劳动保护, 2022(1): 42-48.
|
| [5] |
徐涛. 燃气爆炸建筑坍塌事故救援对策分析——以江苏常州“5·24”瓶装液化气泄漏爆炸救援为例 [J]. 中国应急救援, 2023(4): 70–74. DOI: 10.19384/j.cnki.cn11-5524/p.2023.04.013.
XU T. Analysis of rescue strategy for building collapse accidents caused by gas explosion——a case study of “5·24” bottled liquefied gas leakage and explosion in Changzhou, Jiangsu [J]. China Emergency Rescue, 2023(4): 70–74. DOI: 10.19384/j.cnki.cn11-5524/p.2023.04.013.
|
| [6] |
刘可心, 刘炜, 孙亚松. 多因素耦合作用对甲烷爆炸特性的影响 [J]. 爆炸与冲击, 2023, 43(3): 032101. DOI: 10.11883/bzycj-2022-0352.
LIU K X, LIU W, SUN Y S. Influence of multi-factor coupling on methane explosion characteristics [J]. Explosion and Shock Waves, 2023, 43(3): 032101. DOI: 10.11883/bzycj-2022-0352.
|
| [7] |
许晓元, 孙金华, 刘晅亚. 具有体积分数梯度的连通装置甲烷-空气爆炸特性数值模拟 [J]. 爆炸与冲击, 2021, 41(4): 045401. DOI: 10.11883/bzycj-2020-0086.
XU X Y, SUN J H, LIU X Y. Numerical simulation of methane-air explosion in a connected device with volume fraction gradient [J]. Explosion and Shock Waves, 2021, 41(4): 045401. DOI: 10.11883/bzycj-2020-0086.
|
| [8] |
任少云. 开敞空间液化天然气泄漏低温扩散及爆炸传播规律 [J]. 爆炸与冲击, 2018, 38(4): 891–897. DOI: 10.11883/bzycj-2016-0323.
REN S Y. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space [J]. Explosion and Shock Waves, 2018, 38(4): 891–897. DOI: 10.11883/bzycj-2016-0323.
|
| [9] |
刘洋, 李展, 张亚栋, 等. 基于FLACS的某城市燃气储配站气云爆炸安全评估 [J]. 高压物理学报, 2021, 35(1): 015201. DOI: 10.11858/gywlxb.20200595.
LIU Y, LI Z, ZHANG Y D, et al. Safety evaluation of gas cloud explosions in an urban distribution stations based on FLACS [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015201. DOI: 10.11858/gywlxb.20200595.
|
| [10] |
王秋红, 孙艺林, 李鑫, 等. 乙烯储罐气体泄漏诱发蒸气云爆炸的数值模拟 [J]. 爆炸与冲击, 2020, 40(12): 125401. DOI: 10.11883/bzycj-2020-0202.
WANG Q H, SUN Y L, LI X, et al. Numerical simulation on gas dispersions and vapor cloud explosions induced by gas released from an ethylene storage tank [J]. Explosion and Shock Waves, 2020, 40(12): 125401. DOI: 10.11883/bzycj-2020-0202.
|
| [11] |
ABG SHAMSUDDIN D S N, MOHD FEKERI A F, MUCHTAR A, et al. Computational fluid dynamics modelling approaches of gas explosion in the chemical process industry: a review [J]. Process Safety and Environmental Protection, 2023, 170: 112–138. DOI: 10.1016/j.psep.2022.11.090.
|
| [12] |
PRASAD K, PITTS W M, YANG J C. A numerical study of the release and dispersion of a buoyant gas in partially confined spaces [J]. International Journal of Hydrogen Energy, 2011, 36(8): 5200–5210. DOI: 10.1016/j.ijhydene.2011.01.118.
|
| [13] |
MEI Y, SHUAI J. Research on natural gas leakage and diffusion characteristics in enclosed building layout [J]. Process Safety and Environmental Protection, 2022, 161: 247–262. DOI: 10.1016/j.psep.2022.03.040.
|
| [14] |
SU Y, LI J F, YU B, et al. Numerical investigation on the leakage and diffusion characteristics of hydrogen-blended natural gas in a domestic kitchen [J]. Renewable Energy, 2022, 189: 899–916. DOI: 10.1016/j.renene.2022.03.038.
|
| [15] |
KANG Y, MA S Y, SONG B X, et al. Simulation of hydrogen leakage diffusion behavior in confined space [J]. International Journal of Hydrogen Energy, 2024, 53: 75–85. DOI: 10.1016/j.ijhydene.2023.12.026.
|
| [16] |
WANG B, CHEN B Z, ZHAO J S. The real-time estimation of hazardous gas dispersion by the integration of gas detectors, neural network and gas dispersion models [J]. Journal of Hazardous Materials, 2015, 300: 433–442. DOI: 10.1016/j.jhazmat.2015.07.028.
|
| [17] |
QIU S H, CHEN B, WANG R X, et al. Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization [J]. Atmospheric Environment, 2018, 178: 158–163. DOI: 10.1016/j.atmosenv.2018.01.056.
|
| [18] |
TANG X, WU D L, WANG S M, et al. Research on real-time prediction of hydrogen sulfide leakage diffusion concentration of new energy based on machine learning [J]. Sustainability, 2023, 15(9): 7237. DOI: 10.3390/su15097237.
|
| [19] |
ZHANG X Q, SHI J H, LI J J, et al. Hydrogen jet and diffusion modeling by physics-informed graph neural network [J]. Renewable and Sustainable Energy Reviews, 2025, 207: 114898. DOI: 10.1016/j.rser.2024.114898.
|
| [20] |
HANSEN O R, GAVELLI F, DAVIS S G, et al. Equivalent cloud methods used for explosion risk and consequence studies [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(3): 511–527. DOI: 10.1016/j.jlp.2012.07.006.
|
| [21] |
TAM V H Y, TAN F, SAVVIDES C. A critical review of the equivalent stoichiometric cloud model Q9 in gas explosion modelling [J]. Eng, 2021, 2(2): 156–180. DOI: 10.3390/eng2020011.
|
| [22] |
齐心歌, 王海清, 田英帅, 等. 基于等价气云爆炸风险评估的气体防护区域定量划分 [J]. 化工进展, 2019, 38(3): 1587–1594. DOI: 10.16085/j.issn.1000-6613.2018-0153.
QI X G, WANG H Q, TIAN Y S, et al. Quantitative division of gas protection area based on risk assessment of equivalent gas cloud explosion [J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1587–1594. DOI: 10.16085/j.issn.1000-6613.2018-0153.
|
| [23] |
师吉浩. 海洋平台燃爆风险分析及抗爆减灾设计研究 [D]. 青岛: 中国石油大学(华东), 2018. DOI: 10.27644/d.cnki.gsydu.2018.001848.
SHI J H. Research on explosion risk analysis and mitigation design of offshore platforms [D]. Qingdao: China University of Petroleum (East China), 2018. DOI: 10.27644/d.cnki.gsydu.2018.001848.
|
| [24] |
师燕超, 么志远, 袁明德, 等. 综合管廊天然气泄漏爆炸的定量风险评估 [J]. 建筑结构学报, 2023, 44(11): 129–136. DOI: 10.14006/j.jzjgxb.2021.0677.
SHI Y C, YAO Z Y, YUAN M D, et al. Quantitative risk assessment of natural gas leakage and explosion in utility tunnel [J]. Journal of Building Structures, 2023, 44(11): 129–136. DOI: 10.14006/j.jzjgxb.2021.0677.
|
| [25] |
BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks [EB/OL]. arXiv: 1806.01261. (2018-10-17)[2024-01-17]. http://arxiv.org/abs/1806.01261. DOI: 10.48550/arXiv.1806.01261.
|
| [26] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model [J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80. DOI: 10.1109/TNN.2008.2005605.
|
| [27] |
GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry [C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: PMLR, 2017: 1263-1272.
|
| [28] |
PFAFF T, FORTUNATO M, SANCHEZ-GONZALEZ A, et al. Learning mesh-based simulation with graph networks [C]//9th International Conference on Learning Representations. ICLR, 2021.
|
| [29] |
LI Q L, WANG Y, CHEN W S, et al. Machine learning prediction of BLEVE loading with graph neural networks [J]. Reliability Engineering & System Safety, 2024, 241: 109639. DOI: 10.1016/j.ress.2023.109639.
|
| [30] |
SHI J H, LI J J, TAM W C, et al. Physics_GNN: towards physics-informed graph neural network for the real-time simulation of obstructed gas explosion [J]. Reliability Engineering & System Safety, 2025, 256: 110777. DOI: 10.1016/j.ress.2024.110777.
|
| [31] |
SANCHEZ-GONZALEZ A, GODWIN J, PFAFF T, et al. Learning to simulate complex physics with graph networks [C]//Proceedings of the 37th International Conference on Machine Learning. PMLR, 2020: 8459–8468.
|
| [32] |
LI B B, FENG B, CHEN L. A graph network-based learnable simulator for spatial-temporal prediction of rigid projectile penetration [J]. International Journal of Impact Engineering, 2025, 195: 105123. DOI: 10.1016/j.ijimpeng.2024.105123.
|
| [33] |
GEXCON. FLACS-CFD v25.2 User’s Manual [EB/OL]. 2025. https://www.gexcon.com/support/flacs-documents/.
|
| [34] |
MA J Q, ZHAO Z, YI X Y, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts [C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 1930–1939. DOI: 10.1145/3219819.3220007.
|
| [35] |
LI Q L, LI L, SHAO Y D, et al. A multi-task machine learning approach for data efficient prediction of blast loading [J]. Engineering Structures, 2025, 326: 119577. DOI: 10.1016/j.engstruct.2024.119577.
|
| [36] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770–778. DOI: 10.1109/CVPR.2016.90.
|
| [37] |
MICHAUD E J, LIU Z M, TEGMARK M. Precision machine learning [J]. Entropy, 2023, 25(1): 175. DOI: 10.3390/e25010175.
|
| [38] |
WANG Y J, LAI C Y. Multi-stage neural networks: function approximator of machine precision [J]. Journal of Computational Physics, 2024, 504: 112865. DOI: 10.1016/j.jcp.2024.112865.
|
| [39] |
YUE C J, CHEN L, LI Z, et al. Experimental study on gas explosions of methane-air mixtures in a full-scale residence building [J]. Fuel, 2023, 353: 129166. DOI: 10.1016/j.fuel.2023.129166.
|
| [40] |
KANG Y, MA S Y, SONG B X, et al. Study on the hydrogen leakage diffusion behavior by obstacles in confined spaces [J]. Fuel, 2024, 358: 130110. DOI: 10.1016/j.fuel.2023.130110.
|
| [41] |
国家安全生产监督管理总局. 化工企业定量风险评价导则: AQ/T 3046-2013 [S]. 北京: 煤炭工业出版社, 2013.
|
| [42] |
国家市场监督管理总局, 国家标准化管理委员会. 家用燃气灶具: GB 16410-2020 [S]. 北京: 中国标准出版社, 2020.
|
| [43] |
贾烁宇. 室内燃气泄漏扩散规律及预警机制研究 [D]. 青岛: 中国石油大学(华东), 2022.
JIA S Y. Study on the law and early warning mechanism of indoor gas leakage and diffusion [D]. Qingdao: China University of Petroleum (East China), 2022.
|
| [44] |
中华人民共和国建设部和国家质量监督检验检疫总局. 城镇燃气设计规范: GB 50028-2006 [S]. 北京: 中国建筑工业出版社, 2020.
|
| [45] |
中华人民共和国化学工业部. 家用煤气软管: HG 2486-1993 [S]. 北京: 中国标准出版社, 1993.
|
| [46] |
YUE C J, CHEN L, LI Z, et al. Research on the hazards of gas leakage and explosion in a full-scale residential building [J]. Defence Technology, 2025, 43: 168–181. DOI: 10.1016/j.dt.2024.06.014.
|
| [47] |
HUANG L, QIN J, ZHOU Y, et al. Normalization techniques in training DNNs: methodology, analysis and application [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10173–10196. DOI: 10.1109/TPAMI.2023.3250241.
|
| [48] |
BA J L, KIROS J R, HINTON G E. Layer normalization [EB/OL]. arXiv: 1607.06450. (2016-07-21)[2024-10-11]. http://arxiv.org/abs/1607.06450. DOI: 10.48550/arXiv.1607.06450.
|
| [49] |
KINGMA D P, BA J. Adam: a method for stochastic optimization [C]//3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
|
| [50] |
LINO M, CANTWELL C, BHARATH A A, et al. Simulating continuum mechanics with multi-scale graph neural networks [EB/OL]. [2021-06-09]. http://arxiv.org/abs/2106.04900. DOI: 10.48550/arXiv.2106.04900.
|
| [51] |
HAN X, GAO H, PFAFF T, et al. Predicting physics in mesh-reduced space with temporal attention [C]//The Tenth International Conference on Learning Representations. ICLR, 2022.
|