Volume 36 Issue 5
Oct.  2018
Turn off MathJax
Article Contents
Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07
Citation: Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07

Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading

doi: 10.11883/1001-1455(2016)05-0596-07
  • Received Date: 2015-03-11
  • Rev Recd Date: 2016-01-20
  • Publish Date: 2016-09-25
  • In the present study, with a view to solve the spallation of ductile metal under intense dynamic loading, we develop a new void coalescence criterion accounting for the damage and void geometry based on the geometric relationship between voids. Following the principle of energy conservation, we reveal the physical mechanism explaining the influence of void coalescence on the growth of damage. The comparison between calculated results and experiment data indicates that void coalescence leads to rapid growth of damage, reduction of void numbers, and increase of average void size.
  • loading
  • [1]
    Thomason P F. A view on ductile-fracture modelling[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(9):1105-1122. https://www.researchgate.net/publication/229518515_A_View_on_ductile-fracture_modelling
    [2]
    Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011, 110(3):033513. doi: 10.1063/1.3607294
    [3]
    Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1):157-169. doi: 10.1016/0001-6160(84)90213-X
    [4]
    Benzerga A A. Micromechanics of coalescence in ductile fracture[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(6):1331-1362. doi: 10.1016/S0022-5096(01)00125-9
    [5]
    Gao X, Kim J. Modelling of ductile fracture: Significance of void coalescence[J]. International Journal of Solids and Structures, 2006, 43(20):6277-6293. doi: 10.1016/j.ijsolstr.2005.08.008
    [6]
    黄筑平, 杨黎明, 潘客麟.材料的动态损伤和失效[J].力学进展, 1993, 23(4):433-467. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201304023

    Huang Zhuping, Yang Liming, Pan Keling. Dynamic damage and failure of materials[J]. Adavances in Mechanics, 1993, 3(4):433-467. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201304023
    [7]
    Pardoen T, Hutchinson J W. An extended model for void growth and coalescence[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(12):2467-2512. doi: 10.1016/S0022-5096(00)00019-3
    [8]
    Horstemeyer M F, Matalanis M M, Sieber A M, et al. Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence[J]. International Journal of Plasticity, 2000, 16(7):979-1015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b37e93469f2922e87ae03d47e0ed954
    [9]
    Seppala E T, Belak J, Rudd R E. Three-dimensional molecular dynamic simulation of void coalescence during dynamic fracture of ductile metals[J]. Physics Review: B, 2005, 71(6):064112. doi: 10.1103/PhysRevB.71.064112
    [10]
    Thomason P F. Ductile spallation fracture and the mechanics of void growth and coalescence under shock loading conditions[J]. Acta Materials, 1999, 47(13):3633-3646. doi: 10.1016/S1359-6454(99)00223-2
    [11]
    Tonks D L, Zurek A K, Thissell W R. Coalescence rate model for ductile damage in metals[J]. Journal de Physique Ⅳ France, 2003, 110:893-898. doi: 10.1051/jp4:20020807
    [12]
    Pardoen T, Scheyvaerts F, Tekoglu C, et al. Recent progress in micromechanics-based modeling of void coalescence[C]//The SEM Annual Conference. New Mexico, Albuquerque, USA, 2009.
    [13]
    Feng J P, Jing F Q, Zhang G R. Dynamic ductile fragmentation and the damage function model[J]. Journal of Applied Physics, 1997, 81(6):2575-2578. doi: 10.1063/1.363921
    [14]
    Jacques N, Mercier S, Molinari A. Void coalescence in a porous solid under dynamic loading conditions[J]. International Journal of Fravture, 2012, 173(2):203-213. doi: 10.1007/s10704-012-9683-5
    [15]
    Hosokawa A, Wilkinson D S, Kang J D, et al. Void growth and coalescence in model materials investigated by high-resolution X-ray microtomography[J]. International Journal of Fracture, 2013, 181(1):51-66. doi: 10.1007/s10704-013-9820-9
    [16]
    Hosokawa A, Wilkinson D S, Kang J D, et al. Onset of void coalescence in uniaxial tension studied by continuous X-ray tomography[J]. Acta Materialia, 2013, 61(4):1021-1036. doi: 10.1016/j.actamat.2012.08.002
    [17]
    Llorca F, Roy G. Metallurgical investigation of dynamic damage in tantalum[C]//13th APS Topical Conference on Shock Compression of Condensed Matter. Portland, Oregon, 2003: 589-592.
    [18]
    Lii G T G, Bourne N K, Vecchio K S, et al. Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel[J]. International Journal of Fracture, 2010, 163(1):243-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad2df2e3a2e2ca5bf75978c7513272d1
    [19]
    Venkert A, Guduru P R, Ravichandran G. Effect of loading rate on fracture morphology in a high strength ductile steel[J]. Journal of Engineering Materials and Technology, 2001, 123(3):261-267. doi: 10.1115/1.1371231
    [20]
    Brown L M, Embury J D. The initiation and growth of void at second phase particles[C]//3rd International Conference on the Strength of Metals and Alloys. London, England, 1973: 164-169.
    [21]
    Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4):2812-2825. doi: 10.1063/1.329011
    [22]
    Zhang F G, Zhou H Q, Hu J, et al. Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper[J]. Chinese Physics: B, 2012, 21(9):094601. doi: 10.1088/1674-1056/21/9/094601
    [23]
    Jacques N, Mercier S, Molinari A. Effects of microscale inertiaon dynamic ductile crack growth[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(4):665-690. doi: 10.1016/j.jmps.2011.12.010
    [24]
    张凤国, 周洪强.晶粒尺度对延性金属材料层裂损伤的影响[J].物理学报, 2013, 62(16):164601. doi: 10.7498/aps.62.164601

    Zhang Fengguo, Zhou Hongqiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall[J]. Acta Physica Sinica, 2013, 62(16):164601. doi: 10.7498/aps.62.164601
    [25]
    Trivedi P B, Asay J R, Gupta Y M, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading[J]. Journal of Applied Physics, 2007, 102(8):083513. doi: 10.1063/1.2798497
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (5825) PDF downloads(695) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return