Volume 36 Issue 5
Oct.  2018
Turn off MathJax
Article Contents
Zhu Xiuyun, Lin Gao, Pan Rong, Lu Yu. Sensitivity analysis for impact resistance of steel plate concrete walls based on force vs. time-history analysis[J]. Explosion And Shock Waves, 2016, 36(5): 670-679. doi: 10.11883/1001-1455(2016)05-0670-10
Citation: Zhu Xiuyun, Lin Gao, Pan Rong, Lu Yu. Sensitivity analysis for impact resistance of steel plate concrete walls based on force vs. time-history analysis[J]. Explosion And Shock Waves, 2016, 36(5): 670-679. doi: 10.11883/1001-1455(2016)05-0670-10

Sensitivity analysis for impact resistance of steel plate concrete walls based on force vs. time-history analysis

doi: 10.11883/1001-1455(2016)05-0670-10
  • Received Date: 2015-02-04
  • Rev Recd Date: 2015-04-21
  • Publish Date: 2016-09-25
  • In this paper, to study preventive ways against incidents involving the impact of steel plate concrete (SC) structures, the steel plate concrete (SC) walls composed of surface steel plates, tie-bars, shear studs and concretes were selected as the object of investigation. The impact analysis of the walls was performed using ANSYS/LS-DYNA, the FEM code, based on the force vs. time-history analysis, in which a series of numerical sensitivity studies were conducted to evaluate the effect of several parameters affecting the behavior of the SC wall. These parameters include the thickness of the wall, the thickness of the steel plate, and the diameter and space of tie bars. The results show that they all have an effect on the impact resistance of the SC wall. This is especially true with the thickness of the wall and the steel plate, and the spacing distance between the tie bars. These studies will serve as guidance and reference for the design of SC structures that are to be used in nuclear power plant buildings.
  • loading
  • [1]
    US Nuclear Regulatory Commission.10CFR50.150 Aircraft impact assessment[S]. Washington, DC: US Nuclear Regulatory Commission, 2009.
    [2]
    ERIN Engineering and Research, Inc. NEI 07-13, Revision 8P, methodology for performing aircraft impact assessments for new plant designs[S]. Palo Alto, 2011.
    [3]
    Tsubota H, Koshika N, Mizuno J, et al. Scale model tests of multiple barriers against aircraft impact: Part 1. Experimental program and test results[C]//Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology (SMiRT-15). Seoul, Korea, 1999: Ⅶ137-Ⅶ144.
    [4]
    Mizuno J, Koshika N, Sawamoto Y, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact part 1: Test program and results[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology, 2005: 2566-2579. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD200508001267.htm
    [5]
    Muhammad S, Zhu X Y, Pan R. Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results[J]. Nuclear Engineering and Design, 2014, 273:653-667. doi: 10.1016/j.nucengdes.2014.03.031
    [6]
    朱秀云, 潘蓉, 林皋, 等.基于荷载时程分析法的钢筋混凝土和钢板混凝土墙的冲击响应对比分析[J].振动与冲击, 2014, 33(22):172-177. http://www.cnki.com.cn/article/cjfdtotal-zdcj201422031.htm

    Zhu Xiuyun, Pan Rong, Lin Gao, et al. Comparative analysis of impact response with reinforced concrete and steel plate concrete walls based on force time-history analysis method[J]. Journal of Vibration and Shock, 2014, 33(22):172-177. http://www.cnki.com.cn/article/cjfdtotal-zdcj201422031.htm
    [7]
    潘蓉, 吴婧姝, 张心斌.钢板混凝土结构在核电工程中应用的发展状况[J].工业建筑.2014, 44(12):1-7. http://d.old.wanfangdata.com.cn/Periodical/gyjz201412001

    Pan Rong, Wu Jingshu, Zhang Xinbin. Application and development of steel plate reinforced concrete structure in nuclear power engineering[J]. Industrial Construction, 2014, 44(12):1-7. http://d.old.wanfangdata.com.cn/Periodical/gyjz201412001
    [8]
    Hallquist J Q. LS-DYNA keyword user's manual, revision 971[M]. California: Livermore Software Technology Corportion, 2007.
    [9]
    中国国家核安全局.HAD101/04.核电厂厂址选择的外部人为事件[S].北京: 中国法制出版社, 1989.
    [10]
    Mullapudi T R S, Summers P, Hwan M. Impact analysis of steel plated concrete wall[C]//Structures Congress 2012.ASCE, 2012: 1881-1893.
    [11]
    Arros J, Doumbalski N. Analysis of aircraft impact to concrete structures[J]. Nuclear Engineering and Design, 2007, 237(12/13):1241-1249. https://www.sciencedirect.com/science/article/pii/S0029549306005875
    [12]
    Abu-Odeh A. Modeling and simulation of bogie impacts on concrete bridge rails using LS-DYNA[C]//10th International LS-DYNA Users Conference. 2008.
    [13]
    Comite Euro-International du Beton. CEB-FIP model code 1990[M]. Trowbridge, Wiltshire, U K: Redwood Books, 1993.
    [14]
    Wu Y C, Crawford J E, Magallanes J M. Performance of LS-DYNA concrete constitutive models[C]//12th International LS-DYNA Users Conference, 2012.
    [15]
    朱秀云, 潘蓉, 林皋, 等.基于ANSYS/LS-DYNA的钢板混凝土墙冲击实验的有限元分析[J].爆炸与冲击, 2015, 35(2):222-228. doi: 10.11883/1001-1455(2015)02-0222-07

    Zhu Xiuyun, Pan Rong, Lin Gao, et al. FEM analysis of impact experiments with steel plate concrete walls based on ANSYS/LS-DYNA[J]. Explosion and Shock Waves, 2015, 35(2):222-228. doi: 10.11883/1001-1455(2015)02-0222-07
    [16]
    Mizuno J, Koshika N, Morikawa H, et al. Investigations on impact resistance of steel plate reinforced concrete barriers against aircraft impact. Part 2: Simulation analyses of scale model impact tests[C]//Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology, 2005: 2580-2590.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(1)

    Article Metrics

    Article views (6434) PDF downloads(844) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return