| Citation: | Deng Jiajie, Zhang Xianfeng, Ge Xiankun, Chen Dongdong, Guo Lei. Nose-shape optimization and simulation of projectiles penetrating into concrete target based on local interaction theory[J]. Explosion And Shock Waves, 2017, 37(4): 611-620. doi: 10.11883/1001-1455(2017)04-0611-10 | 
 
	                | [1] | Bunimovich A I, Dubinskii A V. Mathematical models and methods of localized interaction theory[M]. Singapore: World Scientific Publishing, 1995. | 
| [2] | Ben-Dor G, Dubinsky A, Elperin T. Applied high-speed plate penetration dynamics[M]. Netherlands: Springer, 2006. | 
| [3] | Ben-Dor G, Dubinsky A, Elperin T. High-speed penetration dynamics: Engineering models and methods[M]. Singapore: World Scientific Publishing, 2013. | 
| [4] | Ben-Dor G, Dubinsky A, Elperin T. High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields[J]. Mechanics Based Design of Structures and Machines, 2009, 37(4):538-549. doi:  10.1080/15397730903272830 | 
| [5] | Ben-Dor G, Dubinsky A, Elperin T. Localized interaction models with non-constant friction for rigid penetrating impactors[J]. International Journal of Solids and Structures, 2007, 44(7):2593-2607. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026134457/ | 
| [6] | Ben-Dor G, Dubinsky A, Elperin T. Numerical solution for shape optimization of an impactor penetrating into a semi-infinite target[J]. Computers & Structures, 2003, 81(1):9-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=971c54e8a853179f371f74951cb55a0b | 
| [7] | Ben-Dor G, Dubinsky A, Elperin T. Shape optimization of impactor penetrating into concrete or limestone targets[J]. International Journal of Solids and Structures, 2003, 40(17):4487-4500. doi:  10.1016/S0020-7683(03)00212-9 | 
| [8] | Ben-Dor G, Dubinsky A, Elperin T. Optimization of the nose shape of an impactor against a semi-infinite FRP laminate[J]. Composites Science and Technology, 2002, 62(5):663-667. doi:  10.1016/S0266-3538(02)00006-4 | 
| [9] | Ben-Dor G, Dubinsky A, Elperin T. Optimization of layered shields with a given areal density[J]. International Journal of Fracture, 1998, 91(1):L9-L14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f80f37c9160d323597558e848e52019 | 
| [10] | Yakunina G E. The dynamics of pyramidal bodies within the framework of the local interaction model[J]. Journal of Applied Mathematics and Mechanics, 2003, 67(1):11-23. http://cn.bing.com/academic/profile?id=5f03b377af7205b50e3688ccdd3dab47&encoded=0&v=paper_preview&mkt=zh-cn | 
| [11] | Yakunina G Y. The three-dimensional motion of optimalpyramidal bodies[J]. Journal of Applied Mathematics and Mechanics, 2005, 69(2):234-243. doi:  10.1016/j.jappmathmech.2005.03.009 | 
| [12] | Yakunina G. Optimum three-dimensional hypersonic bodies within the framework of a local interaction model[C]//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, 2001: 11. | 
| [13] | Yakunna G Y. Effects of sliding friction on the optimal 3D-nose geometry of rigid rods penetrating media[J]. Optimization and Engineering, 2005, 6(3):315-338. doi:  10.1007/s11081-005-1742-6 | 
| [14] | Ragnedda F, Serra M. Optimum shape of high speed impactor for concrete targets using PSOA heuristic[J]. Engineering, 2010, 2(4):257-262. doi:  10.4236/eng.2010.24035 | 
| [15] | Jones S E, Rule W K. On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction[J]. International Journal of Impact Engineering, 2000, 24(4):403-415. doi:  10.1016/S0734-743X(99)00157-8 | 
| [16] | Chen X W, Li Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6):619-637. doi:  10.1016/S0734-743X(02)00005-2 | 
| [17] | 皮爱国, 黄风雷.基于变分法原理的侵彻弹体头部形状优化设计[J].弹箭与制导学报, 2007, 27(4):126-130. doi:  10.3969/j.issn.1673-9728.2007.04.037 Pi Aiguo, Huang Fenglei. Based on variation method for the shape optimization of penetrator nose shape[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(4):126-130. doi:  10.3969/j.issn.1673-9728.2007.04.037 | 
| [18] | 刘坚成, 黄风雷, 皮爱国, 等.异型头部弹体增强侵彻性能机理研究[J].爆炸与冲击, 2014, 34(4):409-414. doi:  10.11883/1001-1455(2014)04-0409-06 Liu Jiancheng, Huang Fenglei, Pi Aiguo, et al. On enhanced penetration performance of modified nose projectiles[J]. Explosion and Shock Waves, 2014, 34(4):409-414. doi:  10.11883/1001-1455(2014)04-0409-06 | 
| [19] | Liu J, Pi A, Huang F. Penetration performance of double-ogive-nose projectiles[J]. International Journal of Impact Engineering, 2015, 84:13-23. doi:  10.1016/j.ijimpeng.2015.05.003 | 
| [20] | Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15bb10f7d851f075588b20216506d45c | 
| [21] | Luk V K, Forrestal M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles[J]. International Journal of Impact Engineering, 1987, 6(4):291-301. doi:  10.1016/0734-743X(87)90096-0 | 
| [22] | Li Q M, Chen X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. International Journal of Impact Engineering, 2003, 28(1):93-116. doi:  10.1016/S0734-743X(02)00037-4 | 
| [23] | Teland J A, Sjøl H. Penetration into concrete by truncated projectiles[J]. International Journal of Impact Engineering, 2004, 30(4):447-464. doi:  10.1016/S0734-743X(03)00073-3 | 
| [24] | 黄民荣.刚性弹体对混凝土靶的侵彻与贯穿机理研究[D].南京: 南京理工大学, 2011. http: //cdmd.cnki.com.cn/Article/CDMD-10288-1012320967.htm | 
| [25] | Forrestal M J, Frew D J, Hickerson J P, et al. Penetration of concrete targets with deceleration-time measurements[J]. International Journal of Impact Engineering, 2003, 28(5):479-497. doi:  10.1016/S0734-743X(02)00108-2 | 
| [26] | Qian L, Yang Y, Tong L. A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-infinite concrete targets[J]. International Journal of Impact Engineering, 2000, 24(9):947-955. doi:  10.1016/S0734-743X(00)00008-7 | 
| [27] | 石志勇, 汤文辉, 赵国民, 等.混凝土靶中侵彻深度的相似性研究[J].弹道学报, 2005, 17(1):62-66. doi:  10.3969/j.issn.1004-499X.2005.01.012 Shi Zhiyong, Tang Wenhui, Zhao Guomin, et al. Similarity study of the penetration depth for the concrete targets[J]. Journal of Ballistics, 2005, 17(1):62-66. doi:  10.3969/j.issn.1004-499X.2005.01.012 | 
| [28] | Ben-Dor G, Dubinsky A, Elperin T. Shape optimization of high-speed penetrators: A review[J]. Central European Journal of Engineering, 2012, 2(4):473-482. http://cn.bing.com/academic/profile?id=52a17f483d9239a276eed9a7f8370cd5&encoded=0&v=paper_preview&mkt=zh-cn | 
| [29] | Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids & Structures, 1997, 34(31):4127-4146. http://cn.bing.com/academic/profile?id=9f6cbc41cc8e41622e2eccbe35f1dfdd&encoded=0&v=paper_preview&mkt=zh-cn | 
| [30] | 何涛, 文鹤鸣.卵形钢弹对铝合金靶板侵彻问题的数值模拟[J].高压物理学报, 2006, 20(4):408-414. doi:  10.3969/j.issn.1000-5773.2006.04.012 He Tao, Wen Heming. Numerical simulations of the penetration of aluminum targets by ogive-nosed steel projectiles[J]. Chinese Journal of High Pressure Physics, 2006, 20(4):408-414. doi:  10.3969/j.issn.1000-5773.2006.04.012 | 
| [31] | Fang Q, Kong X, Hong J, et al. Prediction of projectile penetration and perforation by finite cavity expansion method with the free-surface effect[J]. Acta Mechanica Solida Sinica, 2014, 27(6):597-611. doi:  10.1016/S0894-9166(15)60005-2 | 
| [32] | Li Q M, Flores-Johnson E A. Hard projectile penetration and trajectory stability[J]. International Journal of Impact Engineering, 2011, 38(10):815-823. doi:  10.1016/j.ijimpeng.2011.05.005 | 
