Volume 39 Issue 1
Oct.  2018
Turn off MathJax
Article Contents
HAN Huilong, ZHANG Xinchun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio[J]. Explosion And Shock Waves, 2019, 39(1): 013103. doi: 10.11883/bzycj-2017-0281
Citation: HAN Huilong, ZHANG Xinchun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio[J]. Explosion And Shock Waves, 2019, 39(1): 013103. doi: 10.11883/bzycj-2017-0281

Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio

doi: 10.11883/bzycj-2017-0281
  • Received Date: 2017-08-06
  • Rev Recd Date: 2018-01-16
  • Publish Date: 2019-01-25
  • In this work, for the traditional square honeycombs, we obtained a joint-based hierarchical honeycomb model with the negative Poisson's ratio (NPR) by replacing the structural nodes of the original honeycombs having smaller inner concave structures. We numerically investigated the dynamic responses and energy absorption characteristics of these honeycombs with NPR under in-plane crushing using the explicit dynamic finite element analysis (DFEA), revealing that, apart from the impact velocity and the relative density, the in-plane dynamic properties of the honeycombs also depend upon the cell micro-structure. Compared with those of the square honeycombs, the dynamic strengths and energy absorption abilities of these honeycombs are obviously improved. Under low or moderate velocity crushing, the specimens exhibit the obvious "neck shrinkage" phenomenon of auxetic materials, and show the unique plateau stress enhancement effect. Based on the energy absorption efficiency method and the one-dimensional shockwave theory, the empirical formulae of densification strain and dynamic plateau stress were given to predict the dynamic load-bearing capacity of the honeycombs with NPR. Our study can serve as a guidance for the multi-objective optimal dynamic design of auxetic cellular materials.
  • loading
  • [1]
    PRAWOTO Y. Seeing auxetic materials from the mechanics point of view:A structural review on the negative Poisson's ratio[J]. Computational Materials Science, 2012, 58(6):140-153. DOI: 10.1016/j.commatsci.2012.02.012.
    [2]
    余同希, 邱信明.冲击动力学[M].北京:清华大学出版社, 2011:197-220.
    [3]
    GIBSON L J, ASHBY M F. Cellular solids:Structure and properties[M]. Cambridge:Cambridge University Press, 1997:1-13.
    [4]
    PRALL D, LAKES R S. Properties of a chiral honeycomb with a Poisson's ratio of -1[J]. International Journal of Mechanical Sciences, 1997, 39(3):305-314. DOI: 10.1016/S0020-7403(96)00025-2.
    [5]
    张新春, 祝晓燕, 李娜.六韧带手性蜂窝结构的动力学响应特性研究[J].振动与冲击, 2016, 35(8):1-7. DOI: 10.13465/j.cnki.jvs.2016.08.001.

    ZHANG Xinchun, ZHU Xiaoyan, LI Na. A study of the dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of Vibration and Shock, 2016, 35(8):1-7. DOI: 10.13465/j.cnki.jvs.2016.08.001.
    [6]
    SCARPA F, SMITH C W, RUZZENE M, et al. Mechanical properties of auxetic tubular truss-like structures[J]. Physica Status Solid, 2008, 245(3):584-590. DOI: 10.1002/pssb.200777715.
    [7]
    张伟, 侯文彬, 胡平.新型负泊松比多孔吸能盒平台区力学性能[J].复合材料学报, 2015, 32(2):534-541. DOI: 10.13801/j.cnki.fhclxb.20140616.003.

    ZHANG Wei, HOU Wenbin, HU Ping. Mechanical properties of new negative Poisson's ratio crush box with cellular structure in plateau stage[J]. Acta Materiae Compositae Sinica, 2015, 32(2):534-541. DOI: 10.13801/j.cnki.fhclxb.20140616.003.
    [8]
    QIAO J X, CHEN C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[J]. International Journal of Impact Engineering, 2015, 83(9):47-58. DOI: 10.1016/j.ijimpeng.2015.04.005.
    [9]
    ZHANG X C, AN L Q, DING H M, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio[J]. Journal of Sandwich Structures and Materials, 2015, 17(1):26-55. DOI: 10.1177/1099636214554180.
    [10]
    RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs:A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2):161-182. DOI: 10.1016/S0734-743X(02)00056-8.
    [11]
    LIU Y, ZHANG X C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J]. International Journal of Impact Engineering, 2009, 36(1):98-109. DOI: 10.1016/j.ijimpeng.2008.03.001.
    [12]
    QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, Part Ⅱ:Dynamic crushing based on finite element simulation[J]. International Journal of Impact Engineering, 2009, 36(10):1231-1241. DOI: 10.1016/j.ijimpeng.2009.05.010.
    [13]
    ZHANG X C, AN L Q, DING H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient[J]. Journal of Sandwich Structures and Materials, 2014, 16(2):125-147. DOI: 10.1177/1099636213509099.
    [14]
    SUN D, ZHANG W, ZHAO Y, et al. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs[J]. Composite Structures, 2013, 96(2):726-735. DOI: 10.1016/j.compstruct.2012.10.008.
    [15]
    ZHOU G, MA Z D, GU J, et al. Design optimization of a NPR structure based on HAM optimization method[J]. Structural and Multidisciplinary Optimization, 2016, 53(3):635-643. DOI: 10.1007/s00158-015-1341-x.
    [16]
    胡玲玲, 蒋玲.胞孔构型对金属蜂窝动态力学性能的影响机理[J].爆炸与冲击, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.

    HU Lingling, JIANG Ling. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion and Shock Waves, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (7413) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return