Volume 39 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
HU Liangliang, HUANG Ruiyuan, GAO Guangfa, JIANG Dong, LI Yongchi. A novel method for determining strain rate of concrete-like materials in SHPB experiment[J]. Explosion And Shock Waves, 2019, 39(6): 063102. doi: 10.11883/bzycj-2018-0142
Citation: HU Liangliang, HUANG Ruiyuan, GAO Guangfa, JIANG Dong, LI Yongchi. A novel method for determining strain rate of concrete-like materials in SHPB experiment[J]. Explosion And Shock Waves, 2019, 39(6): 063102. doi: 10.11883/bzycj-2018-0142

A novel method for determining strain rate of concrete-like materials in SHPB experiment

doi: 10.11883/bzycj-2018-0142
  • Received Date: 2018-04-26
  • Rev Recd Date: 2018-06-22
  • Available Online: 2019-07-25
  • Publish Date: 2019-06-01
  • In this paper, we performed SHPB experiments on concrete-like materials with different strengths (C20, C45, C70) and different steel fiber contents (0%, 0.75%, 1.50%, 4.50%) and analyzed the data drawn. The results showed that the constant strain rate corresponding to the experimental data was co-related with the whole-stage average strain rate to a certain degree and therefore the former could be determined by the 1.38 times of the latter. This method was verified as rational by the comparative analysis of the experimental data of non-constant strain rate with the experimental data of constant strain rate. It was also found that, at the constant strain rate in a relatively short loading time, it is unreasonable to characterize the strain rate corresponding to the experimental data using the constant strain rate corresponding to the short platform stage. In this case, the method proposed in this paper offers a good choice.
  • loading
  • [1]
    江见鲸, 冯乃谦. 混凝土力学 [M]. 北京: 中国铁道出版社, 1991.
    [2]
    郑全平, 周早生, 钱七虎, 等. 防护结构中的震塌问题 [J]. 岩石力学与工程学报, 2003, 28(8): 1393–1398. DOI: 10.3321/j.issn:1000-6915.2003.08.031.

    ZHENG Quanping, ZHOU Zaosheng, QIAN Qihu, et al. Spallation in protective structures [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 28(8): 1393–1398. DOI: 10.3321/j.issn:1000-6915.2003.08.031.
    [3]
    王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用 [J]. 爆炸与冲击, 2005, 25(1): 17–25. DOI: 10.11883/1001-1455(2005)01-0017-09.

    WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behaviour of materials by SHPB [J]. Explosion and Shock Waves, 2005, 25(1): 17–25. DOI: 10.11883/1001-1455(2005)01-0017-09.
    [4]
    胡时胜, 王道荣. 冲击载荷下混凝土材料的动态本构关系 [J]. 爆炸与冲击, 2002, 22(3): 242–246.

    HU Shisheng, WANG Daorong. Dynamic constitutive relation of concrete under impact [J]. Explosion and Shock Waves, 2002, 22(3): 242–246.
    [5]
    XIAO J, LI L, SHEN L, et al. Compressive behaviour of recycled aggregate concrete under impact loading [J]. Cement and Concrete Research, 2015, 71: 46–55. DOI: 10.1016/j.cemconres.2015.01.014.
    [6]
    李世超, 黄瑞源, 唐奎, 等. 一种基于围压和应变率效应的动态本构模型在钢纤维混凝土中的应用 [J]. 兵工学报, 2017, 10(S1): 66–72.

    LI Shichao, HUANG Ruiyuan, TANG Kui, et al. Application of a dynamic constitutive model with confining pressure and strain rate effects in steel fiber reinforced concrete [J]. Acta Armamcntarii, 2017, 10(S1): 66–72.
    [7]
    胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU Shisheng, WANG Lili, SONG Li, et al. Review of the development of Hopkinson bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [8]
    AL-SALLOUM Y, ALMUSALLAM T, IBRAHIM S M, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments [J]. Cement and Concrete Composites, 2015, 55: 34–44. DOI: 10.1016/j.cemconcomp.2014.07.011.
    [9]
    DONG J K, SIRIJAROONCHAI K, El-Tawil S, et al. Numerical simulation of the split Hopkinson pressure bar test technique for concrete under compression [J]. International Journal of Impact Engineering, 2010, 37(2): 141–149. DOI: 10.1016/j.ijimpeng.2009.06.012.
    [10]
    孟益平, 胡时胜. 混凝土材料冲击压缩试验中的一些问题 [J]. 实验力学, 2003, 18(1): 108–112. doi: 10.3969/j.issn.1001-4888.2003.01.020

    MENG Yiping, HU Shisheng. Some problems in the test of concrete under impact compressive loading [J]. Journal of Experimental Mechanics, 2003, 18(1): 108–112. doi: 10.3969/j.issn.1001-4888.2003.01.020
    [11]
    方秦, 洪建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨 [J]. 工程力学, 2014, 31(5): 1–14. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.

    FANG Qin, HONG Jian, ZHANG Jinhua, et al. Issues of SHPB test on concrete-like material [J]. Enginccring Mechanics, 2014, 31(5): 1–14. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.
    [12]
    朱珏, 胡时胜, 王礼立. 率相关混凝土类材料SHPB试验的若干问题 [J]. 工程力学, 2007, 24(1): 78–87. DOI: 10.3969/j.issn.1000-4750.2007.01.014.

    ZHU Jue, HU Shisheng, WANG Lili. Problems of SHPB technique used for rate-dependent concrete-sort materials [J]. Engineering Mechanics, 2007, 24(1): 78–87. DOI: 10.3969/j.issn.1000-4750.2007.01.014.
    [13]
    FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar [J]. Experimental Mechanics, 2002, 42(1): 93–106. DOI: 10.1007/BF02411056.
    [14]
    卢玉斌, 武海军, 李庆明, 等. 脆性材料SHPB实验中脉冲整形技术实现近似恒应变率加载功能的进一步研究 [J]. 爆炸与冲击, 2013, 33(S1): 47–53.

    LU Yubin, WU Haijun, LI Qingming, et al. Further investigation on nearly constant strairrrate loading in SHPB tests for brittle materials using a pulse-shaping technique [J]. Explosion and Shock Waves, 2013, 33(S1): 47–53.
    [15]
    陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究 [J]. 爆炸与冲击, 2004, 24(5): 413–418.

    TAO Junlin, TIAN Changjin, CHEN Yuze, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB [J]. Explosion and Shock Waves, 2004, 24(5): 413–418.
    [16]
    周子龙, 李夕兵, 岩小明. 岩石SHPB测试中试样恒应变率变形的加载条件 [J]. 岩石力学与工程学报, 2009, 28(12): 2443–2452.

    ZHOU Zilong, LI Xibing, YAN Xiaoming. Loading condition for specimen deformation at constant strain rate in SHPB test of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2443–2452.
    [17]
    宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率 [J]. 爆炸与冲击, 2005, 25(3): 207–216. DOI: 10.11883/1001-1455(2005)03-0207-10.

    SONG Li, HU Shisheng. Stress uniformity and constant strain rate in SHPB test [J]. Explosion and Shock Waves, 2005, 25(3): 207–216. DOI: 10.11883/1001-1455(2005)03-0207-10.
    [18]
    张书, 卢玉斌. 混凝土SHPB实验中惯性效应的机理及其影响因素研究 [J]. 兵工学报, 2014, 35(S2): 281–287.

    ZHANG Shu, LU Yubing. Research on the mechanism of inertial effect and its influencing factors in SHPB tests of concrete [J]. Acta Armamentarii, 2014, 35(S2): 281–287.
    [19]
    李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.

    LI Yulong, SUO Tao, GUO Weiguo, et al. Determination of dynamic behavior of materials at elevated tempera-tures and high strain rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
    [20]
    刘孝敏, 胡时胜. 应力脉冲在变截面SHPB锥杆中的传播特性 [J]. 爆炸与冲击, 2000, 20(2): 110–114.

    LIU Xiaomin, HU Shisheng. Wave propagation characteristics in cone bars used for variable cross-section SHPB [J]. Explosion and Shock Waves, 2000, 20(2): 110–114.
    [21]
    李为民, 许金余. 大直径分离式霍普金森压杆试验中的波形整形技术研究 [J]. 兵工学报, 2009, 30(3): 350–355. DOI: 10.3321/j.issn:1000-1093.2009.03.019.

    LI Weimin, XU Jinyu. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test [J]. Acta Armamcntarii, 2009, 30(3): 350–355. DOI: 10.3321/j.issn:1000-1093.2009.03.019.
    [22]
    NEMAT N S. Hopkinson techniques for dynamic recovery experiments [J]. Proceedings of the Royal Society A, 1991, 435(1894): 371–391. DOI: 10.1098/rspa.1991.0150.
    [23]
    牛雷雷, 朱万成, 李少华, 等. 摆锤冲击加载下砂岩中应变率动力特性的试验研究 [J]. 岩石力学与工程学报, 2014, 33(12): 2443–2450. DOI: 10.13722/j.cnki.jrme.2014.12.009.

    NIU Leilei, ZHU Wancheng, LI Shaohua, et al. Experimental study of dynamic haracteristic of sandstone under intermediate strain rate by using pendulum hammer driven " SHPB” apparatus [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2443–2450. DOI: 10.13722/j.cnki.jrme.2014.12.009.
    [24]
    于水生, 卢玉斌, 蔡勇. 一种确定岩石类材料真实应变率效应的数值方法 [J]. 岩石力学与工程学报, 2013, 32(S2): 3283–3290.

    YU Shuisheng, LU Yubin, CAI Yong. A numerical method to detemine real strain-rate effect for rock-like materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3283–3290.
    [25]
    RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split hopkinson pressure bar [J]. Journal of the American Ceramic Society, 1994, 77(1): 263–267. DOI: 10.1111/j.1151-2916.1994.tb06987.x.
    [26]
    陶俊林, 陈裕泽, 田常津, 等. 应变率历史对应力应变曲线的影响 [J]. 爆炸与冲击, 2005, 25(1): 80–84. DOI: 10.11883/1001-1455(2005)01-0080-05.

    TAO Junlin, CHEN Yuze, TIAN Changjin, et al. Investigation of the effect of strain rate history on the stress-strain curves [J]. Explosion and Shock Waves, 2005, 25(1): 80–84. DOI: 10.11883/1001-1455(2005)01-0080-05.
    [27]
    李为民, 许金余, 沈刘军, 等. Φ100 mm SHPB应力均匀及恒应变率加载试验技术研究 [J]. 振动与冲击, 2008, 27(2): 129–132. doi: 10.3969/j.issn.1000-3835.2008.02.030

    LI Weimin, XU Jinyu, SHEN Liujun, et al. Study on 100 mm-diameter SHPB techniques of dynamic stress equilibrium and nearly constant strain rate loading [J]. Journal of Vibration and Shock, 2008, 27(2): 129–132. doi: 10.3969/j.issn.1000-3835.2008.02.030
    [28]
    WANG S, ZHANG M H, QUEK S T. Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading [J]. Construction and Building Materials, 2012, 31(6): 1–11. DOI: 10.1016/j.conbuildmat.2011.12.083.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (6544) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return