Volume 41 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
LI Tong, CHEN Ming, YE Zhiwei, LU Wenbo, WEI Dong. Study on the energy transfer efficiency of explosive blasting with different coupling medium[J]. Explosion And Shock Waves, 2021, 41(6): 062201. doi: 10.11883/bzycj-2020-0381
Citation: LI Tong, CHEN Ming, YE Zhiwei, LU Wenbo, WEI Dong. Study on the energy transfer efficiency of explosive blasting with different coupling medium[J]. Explosion And Shock Waves, 2021, 41(6): 062201. doi: 10.11883/bzycj-2020-0381

Study on the energy transfer efficiency of explosive blasting with different coupling medium

doi: 10.11883/bzycj-2020-0381
  • Received Date: 2020-10-12
  • Rev Recd Date: 2021-01-06
  • Available Online: 2021-04-14
  • Publish Date: 2021-06-05
  • Decoupled charge blasting can effectively reduce the peak pressure of hole wall and improve the blasting effect. Aiming at the issues associated with the explosive energy transferred into rock mass with different coupling medium, the deformation and failure characteristics of rock mass under explosion were analyzed theoretically with the consideration of strain rate effect of the rock mass, and the theoretical energy transfer efficiency of blasting with different coupling medium was obtained. Combined with the numerical simulations, the effects of rock mass properties, explosive categories and decoupled charge coefficient on the energy transfer efficiency of blasting with different coupling medium were studied. The results show that the energy transferred into rock mass from explosive of decoupling charge blasting is related to the coupling medium, the energy transfer efficiency of water coupling blasting is higher than that of air coupling blasting for the same charge structure and same blasting medium. When the charge structure and blasting rock mass are the same but the coupling medium is different, the energy transferred into the rock mass from explosive will be different, depending on blasting rock mass, explosive categories and decoupling charge coefficient. When blasting with the same decoupling charge coefficient but different coupling medium, the higher the rock mass strength, the greater the difference of energy transfer efficiency between different coupling medium. For blasting with the same rock mass properties and same charge structure, the difference of energy transfer efficiency between air coupling blasting and water coupling blasting increases with the increase of decoupling charge coefficient. For emulsion explosive exploding in siltstone, when the decoupling charge coefficient increases from 1.28 to 3.44, the energy transferred from water coupling blasting to surrounding rock mass increases from 1.45 to 6.52 times of air coupling blasting. The research results are of great reference significance for optimizing blasting design, improving explosion energy distribution and increasing the explosion energy utilization rate.
  • loading
  • [1]
    中国爆破行业协会. 中国爆破行业中长期科学与技术发展规划(2016~2025年) [M]. 北京: 中国爆破行业协会, 2015: 2−5.
    [2]
    王志亮, 李永池. 工程爆破中径向水不耦合系数效应数值仿真 [J]. 岩土力学, 2005, 26(12): 1926–1930. DOI: 10.3969/j.issn.1000-7598.2005.12.012.

    WANG Z L, LI Y C. Numerical simulation on effects of radial water-decoupling coefficient in engineering blast [J]. Rock and Soil Mechanics, 2005, 26(12): 1926–1930. DOI: 10.3969/j.issn.1000-7598.2005.12.012.
    [3]
    王伟, 李小春. 不耦合装药下爆炸应力波传播规律的试验研究 [J]. 岩土力学, 2010, 31(6): 1723–1728. DOI: 10.3969/j.issn.1000-7598.2010.06.008.

    WANG W, LI X C. Experimental study of propagation law of explosive stress wave under condition of decouple charge [J]. Rock and Soil Mechanics, 2010, 31(6): 1723–1728. DOI: 10.3969/j.issn.1000-7598.2010.06.008.
    [4]
    王文龙. 钻眼爆破[M]. 北京: 煤炭工业出版社, 1984: 196−209.
    [5]
    BRINKMANN J R. Separating shock wave and gas expansion breakage mechanisms [C] // Proceedings of the Second International Symposium on Rock Fragmentation by Blasting. Keystone, Colorado, International Organising Committee of Rock Fragmentation by Blasting, 1989: 6−15.
    [6]
    LIVINGSTON C W. Fundamental concepts of rock failure [J]. Quarterly of the Colorado school of mines, 1956, 51(3): 1–11.
    [7]
    SANCHIDRIÁN J A, SEGARRA P, LÓPEZ L M. Energy components in rock blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 130–147. DOI: 10.1016/j.ijrmms.2006.05.002.
    [8]
    HONG L, ZHOU Z L, YIN T B, et al. Energy consumption in rock fragmentation at intermediate strain rate [J]. Journal of Central South University of Technology, 2009, 16(4): 677–682. DOI: 10.1007/s11771-009-0112-5.
    [9]
    杨善元. 岩石爆破动力学基础[M]. 北京: 煤炭工业出版社, 1993: 143−144.
    [10]
    郭子庭, 吴从师. 炸药与岩石的全过程匹配 [J]. 矿冶工程, 1993, 13(3): 11–15.

    GUO Z T, WU C S. The exeplosive-rock matching throughout the blasting process [J]. Mining and Metallurgical Engineering, 1993, 13(3): 11–15.
    [11]
    赖应得. 论炸药和岩石的能量匹配 [J]. 工程爆破, 1995, 1(2): 22–26.

    LAI Y D. On energy match between explosive and rock [J]. Engineering Blasting, 1995, 1(2): 22–26.
    [12]
    陈士海, 崔新壮. 水偶合装药与全偶合装药爆破效能讨论 [J]. 爆破, 1998, 15(2): 10–13.

    CHEN S H, CUI X Z. Study on blasting efficacy of water coupling and explosive coupling charges [J]. Blasting, 1998, 15(2): 10–13.
    [13]
    宗琦, 田立, 汪海波. 水介质不耦合装药爆破岩石破坏范围的研究和应用 [J]. 爆破, 1998, 29(2): 42–46. DOI: 10.3963/j.issn.1001-487X.2012.02.011.

    ZONG Q, TIAN L, WANG H B. Study and application on rock damage range by blasting with water-decoupled charge [J]. Blasting, 1998, 29(2): 42–46. DOI: 10.3963/j.issn.1001-487X.2012.02.011.
    [14]
    JANG H, HANDEL D, KO Y, et al. Effects of water deck on rock blasting performance [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 77–83. DOI: 10.1016/j.ijrmms.2018.09.006.
    [15]
    顾文彬, 王振雄, 陈江海, 等. 装药结构对爆破震动能量传递及爆破效果影响研究 [J]. 振动与冲击, 2016, 35(2): 207–211. DOI: 10.13465/j.cnki.jvs.2016.02.035.

    GU W B, WANG Z X, CHEN J H, et al. Influence of charge structure on the energy transfer of blasting vibration and explosive effect [J]. Journal of Vibration and Shock, 2016, 35(2): 207–211. DOI: 10.13465/j.cnki.jvs.2016.02.035.
    [16]
    XIA W J, LU W B, LI R Z, et al. Effect of water-decked blasting on rock fragmentation energy [J]. Shock and Vibration, 2020, 2020: 8194801. DOI: 10.1155/2020/8194801.
    [17]
    王礼立. 应力波基础M]. 2版. 北京: 国防工业出版社, 2005: 25−29.
    [18]
    王伟, 李小春, 石露, 等. 深层岩体松动爆破中不耦合装药效应的探讨 [J]. 岩土力学, 2008, 29(10): 2837–2842. DOI: 10.16285/j.rsm.2008.10.009.

    WANG W, LI X C, SHI L, et al. Discussion on decoupled charge loosening blasting in deep rock mass [J]. Rock and Soil Mechanics, 2008, 29(10): 2837–2842. DOI: 10.16285/j.rsm.2008.10.009.
    [19]
    冷振东. 岩石爆破中爆炸能量的释放与传输机制[D]. 武汉: 武汉大学, 2017: 53−60.
    [20]
    戴俊. 柱状装药爆破的岩石压碎圈与裂隙圈计算 [J]. 辽宁工程技术大学学报(自然科学版), 2001, 20(2): 144–147. DOI: 10.3969/j.issn.1008-0562.2001.02.005.

    DAI J. Calculation of radii of the broken and cracked areas in rock by a long charge explosion [J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(2): 144–147. DOI: 10.3969/j.issn.1008-0562.2001.02.005.
    [21]
    布洛克. 工程断裂力学基础[M]. 王克仁, 何明元, 高桦, 译. 北京: 科学出版社, 1980: 6−22.
    [22]
    宗琦, 杨吕俊. 岩石中爆炸冲击波能量分布规律初探 [J]. 爆破, 1999, 16(2): 1–6.

    ZONG Q, YANG L J. Shock energy distribution of column charge in rock [J]. Blasting, 1999, 16(2): 1–6.
    [23]
    卢文波, 陶振宁. 爆生气体驱动的裂纹扩展速度研究 [J]. 爆炸与冲击, 1994, 14(3): 264–268.

    LU W B, TAO Z Y. A study of fracture propagation velocity driven by gases of explosion products [J]. Explosion and Shock Waves, 1994, 14(3): 264–268.
    [24]
    徐颖, 孟益平, 宗琦, 等. 断层带爆炸裂隙区范围及裂纹扩展长度的研究 [J]. 岩土力学, 2002, 23(1): 81–84. DOI: 10.3969/j.issn.1000-7598.2002.01.018.

    XU Y, MENG Y P, ZONG Q, et al. Study on range of cranny and length of fissure expansion in fault zone [J]. Rock and Soil Mechanics, 2002, 23(1): 81–84. DOI: 10.3969/j.issn.1000-7598.2002.01.018.
    [25]
    水利水电科学研究院. 岩石力学参数手册[M]. 北京: 水利电力出版社, 1991: 429−434.
    [26]
    夏祥, 李海波, 李俊如, 等. 岭澳核电站二期工程基岩爆破安全阈值分析 [J]. 岩土力学, 2008, 29(11): 2945–2951, 2956. DOI: 10.3969/j.issn.1000-7598.2008.11.010.

    XIA X, LI H B, LI J R, et al. Research on vibration safety threshold for rock under blasting excavation [J]. Rock and Soil Mechanics, 2008, 29(11): 2945–2951, 2956. DOI: 10.3969/j.issn.1000-7598.2008.11.010.
    [27]
    刘军. 岩体在冲击载荷作用下的各向异性损伤模型及其应用 [J]. 岩石力学与工程学报, 2004, 23(4): 635–640. DOI: 10.3321/j.issn:1000-6915.2004.04.020.

    LIU J. Anisotropic damage model and its application to rock materials under impact load [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 635–640. DOI: 10.3321/j.issn:1000-6915.2004.04.020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (742) PDF downloads(175) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return