Volume 42 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
SONG Yiping, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. Effect of stress-state adjustment on fragmentation behavior of quartz glass beads subjected to low-velocity impact[J]. Explosion And Shock Waves, 2022, 42(7): 073103. doi: 10.11883/bzycj-2021-0244
Citation: SONG Yiping, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. Effect of stress-state adjustment on fragmentation behavior of quartz glass beads subjected to low-velocity impact[J]. Explosion And Shock Waves, 2022, 42(7): 073103. doi: 10.11883/bzycj-2021-0244

Effect of stress-state adjustment on fragmentation behavior of quartz glass beads subjected to low-velocity impact

doi: 10.11883/bzycj-2021-0244
  • Received Date: 2021-06-22
  • Accepted Date: 2022-06-01
  • Rev Recd Date: 2021-08-20
  • Available Online: 2022-06-07
  • Publish Date: 2022-07-25
  • By using a SHPB device combined with high-speed photography technology, low-velocity impact experiments of quartz glass beads with diameters of 7.90, 11.80 and 15.61 mm were carried out by means of respectively three kinds of transmission bars, i.e., steel bar, aluminum bar, and polymethyl methacrylate (PMMA) bar. According to the load-displacement curves in the breakage process of glass beads under different transmission bar conditions, combined with the load adjustment of glass beads under impact and the strain of glass beads during the experiment, the influence of stress adjustment on the breakage process of glass beads subjected to low-velocity impact is explored. The results show that under the same impact conditions, the adjustment of the material of the transmission bar will alter the load distribution in the glass bead during impact breakage, that is, the change of the wave impedance at the transmission end will change the reflected wave, which leads to the load adjustment in the process of multiple reflection loading. When the transmission bar is made of aluminum and PMMA, the load in the glass bead decreases obviously during the crushing process, and the stress adjustment duration of the glass bead becomes longer with more deformation of the cushion block during the loading process. When the transmission bar is made of steel, the strain in the glass bead is the largest at both ends, while the closer to the middle of the bead, the smaller the strain. For the glass beads loaded with aluminum and/or PMMA transmission bar, local unloading behavior is found at the transmission end of bead. By employing the PMMA transmission bar, the local stress and deformation both decrease, resulting in the glass bead being broken with larger deformation. It is further shown that glass bead breakage is controlled by local deformation and local deformation gradient.
  • loading
  • [1]
    徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.

    XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
    [2]
    HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. DOI: 10.1016/j.mechmat.2013.08.002.
    [3]
    LIU C H, NAGEL S R, SCHECTER D A, et al. Force fluctuations in bead packs [J]. Science, 1995, 269(5223): 513–515. DOI: 10.1126/science.269.5223.513.
    [4]
    MAJMUDAR T S, BEHRINGER R P. Contact force measurements and stress-induced anisotropy in granular materials [J]. Nature, 2005, 435(7045): 1079–1082. DOI: 10.1038/nature03805.
    [5]
    GOLDENBERG C, GOLDHIRSCH I. Force chains, microelasticity, and macroelasticity [J]. Physical Review Letters, 2002, 89(8): 084302. DOI: 10.1103/physrevlett.89.084302.
    [6]
    HARTLEY R R, BEHRINGER R P. Logarithmic rate dependence of force networks in sheared granular materials [J]. Nature, 2003, 421(6926): 928–931. DOI: 10.1038/nature01394.
    [7]
    HUANG J Y, LU L, FAN D, et al. Heterogeneity in deformation of granular ceramics under dynamic loading [J]. Scripta Materialia, 2016, 111: 114–118. DOI: 10.1016/j.scriptamat.2015.08.028.
    [8]
    HUANG J Y, XU S L, YI H S, et al. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268: 86–94. DOI: 10.1016/j.powtec.2014.08.037.
    [9]
    易洪昇, 徐松林, 单俊芳, 等. 不同加载速度下脆性颗粒的破坏特性 [J]. 爆炸与冲击, 2017, 37(5): 913–922. DOI: 10.11883/1001-1455(2017)05-0913-10.

    YI H S, XU S L, SHAN J F, et al. Fracture characteristics of brittle particles at different loading velocities [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. DOI: 10.11883/1001-1455(2017)05-0913-10.
    [10]
    SHAN J F, XU S L, LIU Y G, et al. Dynamic breakage of glass sphere subjected to impact loading [J]. Powder Technology, 2018, 330: 317–329. DOI: 10.1016/j.powtec.2018.02.009.
    [11]
    MCDOWELL G R, AMON A. The application of Weibull statistics to the fracture of soil particles [J]. Soils and Foundations, 2000, 40(5): 133–141. DOI: 10.3208/sandf.40.5_133.
    [12]
    CHEONG Y S, SALMAN A D, HOUNSLOW M J. Effect of impact angle and velocity on the fragment size distribution of glass spheres [J]. Powder Technology, 2003, 138(2/3): 189–200. DOI: 10.1016/j.powtec.2003.09.010.
    [13]
    SALMAN A D, REYNOLDS G K, FU J S, et al. Descriptive classification of the impact failure modes of spherical particles [J]. Powder Technology, 2004, 143/144: 19–30. DOI: 10.1016/j.powtec.2004.04.005.
    [14]
    方继松, 王珠, 熊迅, 等. 石英玻璃球撞击刚性壁的破碎过程 [J]. 高压物理学报, 2020, 34(1): 014101. DOI: 10.11858/gywlxb.20190764.

    FANG J S, WANG Z, XIONG X, et al. Fragmentation process of quartz glass spheres impacting rigid wall [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014101. DOI: 10.11858/gywlxb.20190764.
    [15]
    POTAPOV A V, CAMPBELL C S. The two mechanisms of particle impact breakage and the velocity effect [J]. Powder Technology, 1997, 93(1): 13–21. DOI: 10.1016/S0032-5910(97)03242-7.
    [16]
    简世豪, 苗春贺, 张磊, 等. 双石英玻璃珠的低速冲击破碎行为 [J]. 高压物理学报, 2021, 35(2): 024202. DOI: 10.11858/gywlxb.20200629.

    JIAN S H, MIAO C H, ZHANG L, et al. Fragmentation of double quartz glass spheres subjected to lower-velocity impact [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024202. DOI: 10.11858/gywlxb.20200629.
    [17]
    SHIPWAY P H, HUTCHINGS I M. Fracture of brittle spheres under compression and impact loading. Ⅰ. Elastic stress distributions [J]. Philosophical Magazine A, 1993, 67(6): 1389–1404. DOI: 10.1080/01418619308225362.
    [18]
    CHAU K T, WEI X X, WONG R H C, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses [J]. Mechanics of Materials, 2000, 32(9): 543–554. DOI: 10.1016/S0167-6636(00)00026-0.
    [19]
    黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究 [D]. 合肥: 中国科学技术大学, 2016: 82–84.

    HUANG J Y. Dynamic multiscale deformation behavior and particle-breakage properties of granular materials subjected to impact loading [D]. Hefei: University of Science and Technology of China, 2016: 82–84.
    [20]
    苗春贺, 陈丽娜, 单俊芳, 等. 水泥砂浆抗弹性能研究 [J]. 高压物理学报, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.

    MIAO C H, CHEN L N, SHAN J F, et al. Research on the ballistic performance of cement mortar [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.
    [21]
    FENG R. Formation and propagation of failure in shocked glasses [J]. Journal of Applied Physics, 2000, 87(4): 1693–1700. DOI: 10.1063/1.372079.
    [22]
    JIANG H B, XU S L, SHAN J F, et al. Dynamic breakage of porous hexagonal boron nitride ceramics subjected to impact loading [J]. Powder Technology, 2019, 353: 359–371. DOI: 10.1016/j.powtec.2019.05.028.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (198) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return