Volume 42 Issue 8
Sep.  2022
Turn off MathJax
Article Contents
LI Guojie, WANG Chenglong, GUO Zhiwei, LI Xiang, HUANG Guangyan. Influence of end non-reactive fillers on the dispersion of the fragments in an axially-enhanced warhead[J]. Explosion And Shock Waves, 2022, 42(8): 082202. doi: 10.11883/bzycj-2021-0281
Citation: LI Guojie, WANG Chenglong, GUO Zhiwei, LI Xiang, HUANG Guangyan. Influence of end non-reactive fillers on the dispersion of the fragments in an axially-enhanced warhead[J]. Explosion And Shock Waves, 2022, 42(8): 082202. doi: 10.11883/bzycj-2021-0281

Influence of end non-reactive fillers on the dispersion of the fragments in an axially-enhanced warhead

doi: 10.11883/bzycj-2021-0281
  • Received Date: 2021-07-05
  • Rev Recd Date: 2022-02-22
  • Available Online: 2022-04-06
  • Publish Date: 2022-09-09
  • In the current design of the dynamic damage field of the fragment warheads, the central blind area effect is regarded as an essential factor affecting the warhead damage efficiency improvement. The axially-enhanced warhead has become an important design means to eliminate the dynamic central blind area of the warhead, which attracts more and more attention from relevant researchers. In the present paper, based on the smoothed particle hydrodynamics (SPH) computation method, a series of numerical models for the shell breaking and fragment dispersion processes of axially-reinforced warheads with non-filler, polyurethane filler nylon filler and explosive filler, respectively, at the end under the explosive loadings are established, and used to study the influence of the characteristics of the fillers in the front of the warhead on the dynamic response of the shell. It is found from the numerical simulations that the filler has a significant influence on the velocity of the fragments in the front of the warhead but a minor influence on the dispersion angle of the fragments. The mechanism of the influence of the non-reactive filler on the fragment velocity is analyzed by comparing the velocity history curves of the specific fragments. The results show that the polyurethane foam filling can significantly delay the acceleration process of the explosive shock wave to the forward fragment and reduce the explosive load to a certain extent. The nylon filler can reduce the acceleration of the forward fragment and the acceleration of the lateral fragment to a certain extent. Thus, the explosion loading is guided to be evenly distributed around the circumference of the end position. Considering the synthesis of the involved velocity of the warhead, using low-density and low-mass filler instead of head charge has the same dynamic damage effect of improving the energy utilization efficiency of the axially-enhanced warhead. The numerical models established in this paper and the research finding can provide some reference for the dynamic damage field design of conventional fragment warheads.
  • loading
  • [1]
    赵耘晨. 前向增强杀爆弹前置破片初速及飞散方向研究 [D]. 南京: 南京理工大学, 2016: 1–9.

    ZHAO Y C. The study of fragment initial velocity and scattering direction of front fragment on forward enhanced lethal he projectile [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2016: 1–9.
    [2]
    HUANG G Y, LI W, FENG S S. Fragment velocity distribution of cylindrical rings under eccentric point initiation [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 215–220. DOI: 10.1002/prep.201400180.
    [3]
    NING J G, DUAN Y, XU X Z, et al. Velocity characteristics of fragments from prismatic casing under internal explosive loading [J]. International Journal of Impact Engineering, 2017, 109: 29–38. DOI: 10.1016/j.ijimpeng.2017.05.018.
    [4]
    DHOTE K D, MURTHY K P S, RAJAN K M, et al. Directional warhead design methodology for a tailored fragment beam [J]. Central European Journal of Energetic Materials, 2015, 12(4): 637–649.
    [5]
    DING L L, LI Z D, LIANG M Z, et al. The dispersion rule of fragments about the asymmetric shell [J]. Shock and Vibration, 2017, 2017: 9810978. DOI: 10.1155/2017/9810978.
    [6]
    李超, 李向东, 陈志斌, 等. 前向增强杀伤榴弹对人员目标杀伤威力分析 [J]. 兵工学报, 2014, 35(7): 1119–1123. DOI: 10.3969/j.issn.1000-1093.2014.07.028.

    LI C, LI X D, CHEN Z B, et al. Lethality of forward enhanced lethal he projectile against personnel targets [J]. Acta Armamentarii, 2014, 35(7): 1119–1123. DOI: 10.3969/j.issn.1000-1093.2014.07.028.
    [7]
    石志彬, 高敏, 米双山, 等. 前向战斗部破片散布均匀性研究 [J]. 弹箭与制导学报, 2014, 34(1): 95-97; 138. DOI: 10.3969/j.issn.1673-9728.2014.01.024.

    SHI Z B, GAO M, MI S S, et al. Study on fragment dispersion uniformity of forward-firing warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(1): 95-97; 138. DOI: 10.3969/j.issn.1673-9728.2014.01.024.
    [8]
    崔俊杰, 姜建东, 牛新立, 等. 轴向预制破片初速影响因素的研究 [J]. 弹箭与制导学报, 2014, 34(2): 84-86; 97. DOI: 10.3969/j.issn.1673-9728.2014.02.023.

    CUI J J, JIANG J D, NIU X L, et al. The research on impacting factors of axial preformed fragment velocity [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(2): 84-86; 97. DOI: 10.3969/j.issn.1673-9728.2014.02.023.
    [9]
    郭子云, 赵太勇, 陈智刚. 战斗部端面预制破片威力性能影响的数值仿真 [J]. 计算机仿真, 2015, 32(3): 33–37. DOI: 10.3969/j.issn.1006-9348.2015.03.008.

    GUO Z Y, ZHAO T Y, CHEN Z G. Numerical simulation of lethality influence of warhead end premade fragment [J]. Computer Simulation, 2015, 32(3): 33–37. DOI: 10.3969/j.issn.1006-9348.2015.03.008.
    [10]
    李明星, 王志军, 黄阳洋, 等. 不同形状轴向预制破片的飞散特性研究 [J]. 兵器装备工程学报, 2017, 38(12): 65–69. DOI: 10.11809/scbgxb2017.12.016.

    LI M X, WANG Z J, HUANG Y Y, et al. Study on the scattering characteristics of different shape axial prefabricated fragment [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 65–69. DOI: 10.11809/scbgxb2017.12.016.
    [11]
    谭振, 陈鹏万, 周强, 等. 战斗部轴向威力的增强 [J]. 爆炸与冲击, 2018, 38(4): 876–882. DOI: 10.11883/bzycj-2016-0342.

    TAN Z, CHEN P W, ZHOU Q, et al. Enhancement of axial lethality of warhead [J]. Explosion and Shock Waves, 2018, 38(4): 876–882. DOI: 10.11883/bzycj-2016-0342.
    [12]
    JOHNSON G R, COOK W H . A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 12–21.
    [13]
    陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 69–74. DOI: 10.11883/1001-1455(2005)05-0451-06.

    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 69–74. DOI: 10.11883/1001-1455(2005)05-0451-06.
    [14]
    DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook [M]. Livermore, CA, USA: Lawrence Livermore National Laboratory, 1985.
    [15]
    DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants [R] . Livermore, CA, USA: Lawrence Livermore National Laboratory, 1981.
    [16]
    恽寿榕, 涂侯杰, 梁德寿, 等. 爆炸力学计算方法[M]. 北京: 北京理工大学出版社, 1995.

    YUN S R, TU H J, JIANG D S, et al. Explosion mechanics calculation method[M]. Beijing, China: Beijing Institute of Technology Press, 1995.
    [17]
    ZHOU Y, WANG T, ZHU W, BIAN X, HUANG G. Evaluation of blast mitigation effects of hollow cylindrical barriers based on water and foam [J]. Composite Structures, 2022, 282: 115016. DOI: 10.1016/j.compstruct.2021.115016.
    [18]
    MATUSKA D A, NEEDHAM C E, DURRETT R E. The AFWL HULL code codes for large problems fluid dynamics[C]//Proceedings of the SIGNUM Meeting on Software for Partial Differential Equations. New York, USA: Association for Computing Machinery, 1975. DOI: 10.1145/800207.806410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (415) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return