Volume 42 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
LI Bin, ZHU Zhiwu, LI Tao. Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles[J]. Explosion And Shock Waves, 2022, 42(9): 091411. doi: 10.11883/bzycj-2021-0475
Citation: LI Bin, ZHU Zhiwu, LI Tao. Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles[J]. Explosion And Shock Waves, 2022, 42(9): 091411. doi: 10.11883/bzycj-2021-0475

Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles

doi: 10.11883/bzycj-2021-0475
  • Received Date: 2021-11-15
  • Rev Recd Date: 2022-04-25
  • Available Online: 2022-05-18
  • Publish Date: 2022-09-29
  • During engineering construction and service in seasonally frozen soil regions, frozen soil is often subjected to the combined action of freeze-thaw (F-T) cycles and impact loading, which changes its physical state and mechanical properties. In order to explore the effect of F-T cycles on the impact dynamic mechanical properties of frozen soil, in this paper, the typical frozen soil was taken as the research object, and the effect of F-T cycles on the impact dynamic mechanical properties of frozen soil was comprehensively studied with the help of high and low temperature F-T cycles experimental equipment and a split Hopkinson pressure bar device, through F-T cycles experiments with different F-T cycles numbers, freezing experiments at different temperatures, and impact dynamic experiments with different strain rates. The results shows that there is an F-T cycles effect in frozen soil. With the increase of the number of F-T cycles, the peak stress of frozen soil decreases to a certain extent, but after reaching the critical number of F-T cycles, the peak stress remains stable. According to the hydrostatic pressure theory, it is believed that the F-T cycles mainly changes the mechanical properties of frozen soil by changing its microstructural characteristics. Meanwhile, the frozen soil also exhibits obvious strain rate effect and temperature effect, and its peak stress increases with the increase of strain rate or the decrease of temperature. The F-T damage factor was defined by the peak stress, and the impact damage was deduced by a statistical method that it assumes the microstructure strength of frozen soil satisfies the Weibull distribution, a damage viscoelastic constitutive model based on the Z-W-T equation was proposed. The model can better describe the impact dynamic mechanical behavior of frozen soil after F-T cycles and provide reference for the impact dynamic damage of frozen soil in seasonally frozen soil regions.
  • loading
  • [1]
    FRENCH H M. The periglacial environment [M]. 4th ed. Hoboken: John Wiley & Sons, 2017.
    [2]
    RAN Y H, LI X, CHENG G D, et al. Distribution of permafrost in China: an overview of existing permafrost maps [J]. Permafrost and Periglacial Processes, 2012, 23(4): 322–333. DOI: 10.1002/ppp.1756.
    [3]
    马巍, 徐学祖, 张立新. 冻融循环对石灰粉土剪切强度特性的影响 [J]. 岩土工程学报, 1999, 21(2): 158–160. DOI: 10.3321/j.issn:1000-4548.1999.02.005.

    MA W, XU X Z, ZHANG L X. Influence of frost and thaw cycles on shear strength of lime silt [J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 158–160. DOI: 10.3321/j.issn:1000-4548.1999.02.005.
    [4]
    LEE W, BOHRA N C, ALTSCHAEFFL A G, et al. Resilient modulus of cohesive soils and the effect of freeze-thaw [J]. Canadian Geotechnical Journal, 1995, 32(4): 559–568. DOI: 10.1139/t95-059.
    [5]
    王大雁, 马巍, 常小晓, 等. 冻融循环作用对青藏粘土物理力学性质的影响 [J]. 岩石力学与工程学报, 2005, 24(23): 4313–4319. DOI: 10.3321/j.issn:1000-6915.2005.23.018.

    WANG D Y, MA W, CHANG X X, et al. Physico-mechanical properties changes of Qinghai-Tibet clay due to cyclic freezing and thawing [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4313–4319. DOI: 10.3321/j.issn:1000-6915.2005.23.018.
    [6]
    HOTINEANU A, BOUASKER M, ALDAOOD A, et al. Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays [J]. Cold Regions Science and Technology, 2015, 119: 151–157. DOI: 10.1016/j.coldregions.2015.08.008.
    [7]
    苏谦, 唐第甲, 刘深. 青藏斜坡黏土冻融循环物理力学性质试验 [J]. 岩石力学与工程学报, 2008, 27(S1): 2990–2994.

    SU Q, TANG D J, LIU S. Test on physico-mechanical properties of Qinghai-Tibet slope clay under freezing-thawing cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 2990–2994.
    [8]
    穆彦虎, 陈涛, 陈国良, 等. 冻融循环对黏质粗粒土抗剪强度影响的试验研究 [J]. 防灾减灾工程学报, 2019, 39(3): 375–386. DOI: 10.13409/j.cnki.jdpme.2019.03.002.

    MU Y H, CHEN T, CHEN G L, et al. Experimental study on effect of cyclic freeze-thaw on shear behaviors of clayey coarse-grained soil [J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(3): 375–386. DOI: 10.13409/j.cnki.jdpme.2019.03.002.
    [9]
    齐吉琳, 程国栋, VERMEER P A. 冻融作用对土工程性质影响的研究现状 [J]. 地球科学进展, 2005, 20(8): 887–894. DOI: 10.3321/j.issn:1001-8166.2005.08.010.

    QI J L, CHENG G D, VERMEER P A. State-of-the-art of influence of freeze-thaw on engineering properties of soils [J]. Advances in Earth Science, 2005, 20(8): 887–894. DOI: 10.3321/j.issn:1001-8166.2005.08.010.
    [10]
    ZHOU Z W, MA W, ZHANG S J, et al. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess [J]. Cold Regions Science and Technology, 2018, 146: 9–18. DOI: 10.1016/j.coldregions.2017.11.011.
    [11]
    XU X T, ZHANG W D, FAN C X, et al. Effect of freeze-thaw cycles on the accumulative deformation of frozen clay under cyclic loading conditions: experimental evidence and theoretical model [J]. Road Materials and Pavement Design, 2021, 22(4): 925–941. DOI: 10.1080/14680629.2019.1696221.
    [12]
    FAN C X, ZHANG W D, LAI Y, et al. Mechanical behaviors of frozen clay under dynamic cyclic loadings with freeze-thaw cycles [J]. Cold Regions Science and Technology, 2021, 181: 103184. DOI: 10.1016/j.coldregions.2020.103184.
    [13]
    LEE M Y, FOSSUM A F, COSTIN L S, et al. Frozen soil material testing and constitutive modeling [R]. Albuquerque: Sandia National Laboratory, 2002. DOI: 10.2172/793403.
    [14]
    ZHANG F L, ZHU Z W, FU T T, et al. Damage mechanism and dynamic constitutive model of frozen soil under uniaxial impact loading [J]. Mechanics of Materials, 2020, 140: 103217. DOI: 10.1016/j.mechmat.2019.103217.
    [15]
    MA D D, XIANG H S, MA Q Y, et al. Dynamic damage constitutive model of frozen silty soil with prefabricated crack under uniaxial load [J]. Journal of Engineering Mechanics, 2021, 147(6): 04021033. DOI: 10.1061/(Asce)Em.1943-7889.0001933.
    [16]
    SHANGGUAN Z H, ZHU Z W, TANG W R. Dynamic impact experiment and numerical simulation of frozen soil with prefabricated holes [J]. Journal of Engineering Mechanics, 2020, 146(8): 04020085. DOI: 10.1061/(Asce)Em.1943-7889.0001821.
    [17]
    TANG W R, ZHU Z W, FU T T, et al. Dynamic experiment and numerical simulation of frozen soil under confining pressure [J]. Acta Mechanica Sinica, 2020, 36(6): 1302–1318. DOI: 10.1007/s10409-020-00999-4.
    [18]
    WANG D Y, MA W, NIU Y H, et al. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay [J]. Cold Regions Science and Technology, 2007, 48(1): 34–43. DOI: 10.1016/j.coldregions.2006.09.008.
    [19]
    XU J, LI Y F, LAN W, et al. Shear strength and damage mechanism of saline intact loess after freeze-thaw cycling [J]. Cold Regions Science and Technology, 2019, 164: 102779. DOI: 10.1016/j.coldregions.2019.05.005.
    [20]
    JI Y K, ZHOU G Q, HALL M R. Frost heave and frost heaving-induced pressure under various restraints and thermal gradients during the coupled thermal-hydro processes in freezing soil [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3671–3683. DOI: 10.1007/s10064-018-1345-z.
    [21]
    XIA K W, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system–a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27–59. DOI: 10.1016/j.jrmge.2014.07.008.
    [22]
    ZHANG F L, ZHU Z W, MA W, et al. A unified viscoplastic model and strain rate-temperature equivalence of frozen soil under impact loading [J]. Journal of the Mechanics and Physics of Solids, 2021, 152: 104413. DOI: 10.1016/j.jmps.2021.104413.
    [23]
    LEE S, KIM K M, PARK J, et al. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2018, 113: 191–202. DOI: 10.1016/j.ijimpeng.2017.11.015.
    [24]
    董凯, 任辉启, 阮文俊, 等. 珊瑚砂应变率效应研究 [J]. 爆炸与冲击, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.

    DONG K, REN H Q, RUAN W J, et al. Study on strain rate effect of coral sand [J]. Explosion and Shock Waves, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.
    [25]
    巫绪涛, 胡时胜, 陈德兴, 等. 钢纤维高强混凝土冲击压缩的试验研究 [J]. 爆炸与冲击, 2005, 25(2): 125–131. DOI: 10.11883/1001-1455(2005)02-0125-07.

    WU X T, HU S S, CHEN D X, et al. Impact compression experiment of steel fiber reinforced high strength concrete [J]. Explosion and Shock Waves, 2005, 25(2): 125–131. DOI: 10.11883/1001-1455(2005)02-0125-07.
    [26]
    ZHU Z W, KANG G Z, MA Y, et al. Temperature damage and constitutive model of frozen soil under dynamic loading [J]. Mechanics of Materials, 2016, 102: 108–116. DOI: 10.1016/j.mechmat.2016.08.009.
    [27]
    陈柏生, 胡时胜, 马芹永, 等. 冻土动态力学性能的实验研究 [J]. 力学学报, 2005, 37(6): 724–728. DOI: 10.6052/0459-1879-2005-6-2004-450.

    CHEN B S, HU S S, MA Q Y, et al. Experimental research of dynamic mechanical behaviors of frozen soil [J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 724–728. DOI: 10.6052/0459-1879-2005-6-2004-450.
    [28]
    LI B, ZHU Z W, NING J G, et al. Viscoelastic-plastic constitutive model with damage of frozen soil under impact loading and freeze-thaw loading [J]. International Journal of Mechanical Sciences, 2022, 214: 106890. DOI: 10.1016/j.ijmecsci.2021.106890.
    [29]
    姜亚成, 周磊, 朱哲明, 等. 冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律 [J]. 爆炸与冲击, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.

    JIANG Y C, ZHOU L, ZHU Z M, et al. Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads [J]. Explosion and Shock Waves, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.
    [30]
    JIN S S, ZHENG G P, YU J. A micro freeze-thaw damage model of concrete with fractal dimension [J]. Construction and Building Materials, 2020, 257: 119434. DOI: 10.1016/j.conbuildmat.2020.119434.
    [31]
    ZHANG Z Y, LIU Q, WU Q, et al. Damage evolution of asphalt mixture under freeze-thaw cyclic loading from a mechanical perspective [J]. International Journal of Fatigue, 2021, 142: 105923. DOI: 10.1016/j.ijfatigue.2020.105923.
    [32]
    ZENG W, DING Y N, ZHANG Y L, et al. Effect of steel fiber on the crack permeability evolution and crack surface topography of concrete subjected to freeze-thaw damage [J]. Cement and Concrete Research, 2020, 138: 106230. DOI: 10.1016/j.cemconres.2020.106230.
    [33]
    GONG F Y, JACOBSEN S. Modeling of water transport in highly saturated concrete with wet surface during freeze/thaw [J]. Cement and Concrete Research, 2019, 115: 294–307. DOI: 10.1016/j.cemconres.2018.08.013.
    [34]
    SUN M, ZOU C Y, XIN D B. Pore structure evolution mechanism of cement mortar containing diatomite subjected to freeze-thaw cycles by multifractal analysis [J]. Cement and Concrete Composites, 2020, 114: 103731. DOI: 10.1016/j.cemconcomp.2020.103731.
    [35]
    LÖVQVIST L, BALIEU R, KRINGOS N. A thermodynamics-based model for freeze-thaw damage in asphalt mixtures [J]. International Journal of Solids and Structures, 2020, 203: 264–275. DOI: 10.1016/j.ijsolstr.2020.07.021.
    [36]
    徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究 [J]. 岩石力学与工程学报, 2005, 24(17): 3076–3082. DOI: 10.3321/j.issn:1000-6915.2005.17.012.

    XU G M, LIU Q S. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3076–3082. DOI: 10.3321/j.issn:1000-6915.2005.17.012.
    [37]
    FU T T, ZHU Z W, CAO C X. Constitutive model of frozen-soil dynamic characteristics under impact loading [J]. Acta Mechanica, 2019, 230(5): 1869–1889. DOI: 10.1007/s00707-019-2369-6.
    [38]
    CHOI K S, PAN J. A generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials [J]. International Journal of Plasticity, 2009, 25(7): 1325–1358. DOI: 10.1016/j.ijplas.2008.09.005.
    [39]
    WANG L L. Stress wave propagation for nonlinear viscoelastic polymeric materials at high strain rates [J]. Chinese Journal of Mechanics-Series A, 2003, 19(1): 177–183. DOI: 10.1017/s1727719100004184.
    [40]
    ZHU Z W, FU T T, ZHOU Z W, et al. Research on Ottosen constitutive model of frozen soil under impact load [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104544. DOI: 10.1016/j.ijrmms.2020.104544.
    [41]
    王礼立. 爆炸/冲击动力学学习研究中的若干疑惑 [J]. 爆炸与冲击, 2021, 41(1): 011401. DOI: 10.11883/bzycj-2020-0415.

    WANG L L. Some doubts in studying explosion/impact dynamics [J]. Explosion and Shock Waves, 2021, 41(1): 011401. DOI: 10.11883/bzycj-2020-0415.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (621) PDF downloads(169) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return