Volume 43 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LI Wenjie, YANG Xiao, WAN Yu, DU Hongbo, XIAO Yi, YANG Shengfa. A critical safety wave pressure model of typical fishes under the action of underwater blasting shock waves[J]. Explosion And Shock Waves, 2023, 43(3): 034203. doi: 10.11883/bzycj-2022-0017
Citation: LI Wenjie, YANG Xiao, WAN Yu, DU Hongbo, XIAO Yi, YANG Shengfa. A critical safety wave pressure model of typical fishes under the action of underwater blasting shock waves[J]. Explosion And Shock Waves, 2023, 43(3): 034203. doi: 10.11883/bzycj-2022-0017

A critical safety wave pressure model of typical fishes under the action of underwater blasting shock waves

doi: 10.11883/bzycj-2022-0017
  • Received Date: 2022-01-13
  • Rev Recd Date: 2022-04-15
  • Available Online: 2022-04-22
  • Publish Date: 2023-03-05
  • To investigate the propagation process of the underwater blasting shock wave in a fish body and its effect on typical swim bladder fishes, a critical safety wave pressure model for typical fishes was established and verified through theoretical analysis and field tests. According to the transverse reflection pattern of one-dimensional elastic compression wave between different media, the relationship between the critical safety wave pressure and the body length of typical swim bladder fishes was established. The length and mechanical properties of the swim bladder and fish body were measured using a vernier caliper, a digital micrometer, and a microcomputer tensile tester. Based on the measured data, the positive correlations of the length, width, wall thickness, and radial critical tensile stress of the swim bladder with the fish body length were determined, and the parameters in the fish critical safety wave pressure model were calibrated. The wave impedance ratio of the water medium and swim bladder wall medium was 0.3–2.0. The width, wall thickness, shape, and radial critical tensile stress coefficients of the swimming bladder were 0.04–0.09, 0.002, 0.6–1.1 and 60, respectively. The underwater blasting shock wave pressure and its effect on the fishes were measured using a blast wave tester, and the damage to the fishes was divided into three types: death, survival with influence, and survival without influence. The fish critical safety wave pressure model was verified by the statistical results of fish damage. The results show that the damage states of fishes with different body lengths at different shock pressures are conformed with the maximum and minimum critical safety wave pressure that the fishes can withstand. The proposed fish critical safety wave pressure model can be used to describe the relationship between the critical safety wave pressure and body length of the swim bladder fishes under the action of the underwater blasting shock waves. The research achievement can provide a theoretical basis for ecological protection of the fishes in the waterway regulation project of the upper reaches of the Yangtze River.
  • loading
  • [1]
    张先炳, 杨胜发, 杨威, 等. 长江上游宜宾-江津与涪陵-丰都江段鱼类早期资源分布研究 [J]. 淡水渔业, 2021, 51(5): 51–59. DOI: 10.3969/j.issn.1000-6907.2021.05.007.

    ZHANG X B, YANG S F, YANG W, et al. The distribution of the early-stage fish resources between Yibin-Jiangjin and Fuling-Fengdu in the upper reaches of the Yangtze River [J]. Freshwater Fisheries, 2021, 51(5): 51–59. DOI: 10.3969/j.issn.1000-6907.2021.05.007.
    [2]
    高天珩, 田辉伍, 叶超, 等. 长江上游珍稀特有鱼类国家级自然保护区干流段鱼类组成及其多样性 [J]. 淡水渔业, 2013, 43(2): 36–42. DOI: 10.3969/j.issn.1000-6907.2013.02.007.

    GAO T H, TIAN H W, YE C, et al. Diversity and composition of fish in the mainstream of national nature reserve of rare and endemic fish in the upper Yangtze River [J]. Freshwater Fisheries, 2013, 43(2): 36–42. DOI: 10.3969/j.issn.1000-6907.2013.02.007.
    [3]
    段辛斌. 长江上游鱼类资源现状及早期资源调查研究 [D]. 武汉: 华中农业大学, 2008: 1−6. DOI: 10.7666/d.y1598376.
    [4]
    喻灿星, 覃国杰, 曾丽. 内河航道水下炸礁钻孔爆破技术研究 [J]. 工程爆破, 2021, 27(4): 58–63. DOI: 10.19931/j.EB.20200273.

    YU C X, QIN G J, ZENG L. Research on technology of underwater reef drilling blasting in an inland waterway [J]. Engineering Blasting, 2021, 27(4): 58–63. DOI: 10.19931/j.EB.20200273.
    [5]
    李金河, 赵继波, 谭多望, 等. 炸药水中爆炸的冲击波性能 [J]. 爆炸与冲击, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05.

    LI J H, ZHAO J B, TAN D W, et al. Underwater shock wave performances of explosives [J]. Explosion and Shock Waves, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05.
    [6]
    赵根, 吴从清, 王文辉. 爆破水中冲击波对鱼类损伤研究 [J]. 工程爆破, 2011, 17(4): 103–105, 93. DOI: 10.3969/j.issn.1006-7051.2011.04.025.

    ZHAO G, WU C Q, WANG W H. Research on blasting shock wave in water to damage of fish [J]. Engineering Blasting, 2011, 17(4): 103–105, 93. DOI: 10.3969/j.issn.1006-7051.2011.04.025.
    [7]
    李文涛, 张秀梅. 水下爆破施工对鱼类影响的估算及预防措施 [J]. 海洋科学, 2003, 27(11): 20–23. DOI: 10.3969/j.issn.1000-3096.2003.11.005.

    LI W T, ZHANG X M. Impact and mitigation measures for fish communities exposed to underwater explosion [J]. Marine Sciences, 2003, 27(11): 20–23. DOI: 10.3969/j.issn.1000-3096.2003.11.005.
    [8]
    贾虎, 沈兆武. 空气隔层对水中冲击波的衰减特性 [J]. 爆炸与冲击, 2012, 32(1): 61–66. DOI: 10.11883/1001-1455(2012)01-0061-06.

    JIA H, SHEN Z W. An investigation into attenuation of underwater shockwave by air interlayer [J]. Explosion and Shock Waves, 2012, 32(1): 61–66. DOI: 10.11883/1001-1455(2012)01-0061-06.
    [9]
    樊自建, 沈兆武, 马宏昊. 水中空气隔层对冲击波传播衰减作用的初步探讨 [J]. 工程爆破, 2007, 13(2): 7–10. DOI: 10.3969/j.issn.1006-7051.2007.02.002.

    FAN Z J, SHEN Z W, MA H H. Primary study on attenuation of underwater shock wave by using air insulation [J]. Engineering Blasting, 2007, 13(2): 7–10. DOI: 10.3969/j.issn.1006-7051.2007.02.002.
    [10]
    徐爽, 赵宁, 王春武, 等. 水/气多介质问题的界面处理方法 [J]. 爆炸与冲击, 2015, 35(3): 326–334. DOI: 10.11883/1001-1455-(2015)03-0326-09.

    XU S, ZHAO N, WANG C W, et al. Interface treating methods for the gas-water multi-phase flows [J]. Explosion and Shock Waves, 2015, 35(3): 326–334. DOI: 10.11883/1001-1455-(2015)03-0326-09.
    [11]
    尚龙生, 戴云丛, 刘现明, 等. 水中爆破对双台子河口渔场的影响 [J]. 海洋环境科学, 1994, 13(3): 23–26,32.
    [12]
    KEEVIN T M. A review of natural resource agency recommendations for mitigating the impacts of underwater blasting [J]. Reviews in Fisheries Science, 1998, 6(4): 281–313. DOI: 10.1080/10641269891314302.
    [13]
    周杰, 陶钢, 王健. 爆炸冲击波对肺损伤的数值模拟 [J]. 爆炸与冲击, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05.

    ZHOU J, TAO G, WANG J. Numerical simulation of lung injury induced by shock wave [J]. Explosion and Shock Waves, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05.
    [14]
    WIERNICKI C J, LIANG D, BAILEY H, et al. The effect of swim bladder presence and morphology on sound frequency detection for fishes [J]. Reviews in Fisheries Science & Aquaculture, 2020, 28(4): 459–477. DOI: 10.1080/23308249.2020.1762536.
    [15]
    HALVORSEN M B, CASPER B M, WOODLEY C M, et al. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds [J]. PLoS One, 2012, 7(6): e38968. DOI: 10.1371/journal.pone.0038968.
    [16]
    杨志焕, 朱佩芳, 蒋建新, 等. 水下冲击波的生物效应 [J]. 爆炸与冲击, 2003, 23(2): 134–139.

    YANG Z H, ZHU P F, JIANG J X, et al. Bio-effects of underwater blast waves [J]. Explosion and Shock Waves, 2003, 23(2): 134–139.
    [17]
    中华人民共和国国家标准编写组. 爆破安全规程: GB 6722—2014 [S]. 北京: 中国标准出版社, 2015.
    [18]
    孙玉. 声阻抗梯度变化材料中声传播特性研究 [D]. 黑龙江: 哈尔滨工程大学, 2015: 91–107. DOI: 10.7666/d.D749650.
    [19]
    杜伟东, 李海森, 陈宝伟, 等. 一种基于声散射特性的有鳔鱼特征获取方法 [J]. 应用声学, 2014, 33(6): 505–511. DOI: 10.11684/j.issn.1000-310X.2014.06.005.

    DU W D, LI H S, CHEN B W, et al. Features acquisition of fish with swim bladder based on acoustic scattering characteristics [J]. Journal of Applied Acoustics, 2014, 33(6): 505–511. DOI: 10.11684/j.issn.1000-310X.2014.06.005.
    [20]
    李鑫. 鱼鳔作为新型心血管外科手术生物材料的试验研究 [D]. 上海: 第二军医大学, 2013: 1–32. DOI: 10.7666/d.Y2339973.
    [21]
    张更申, 张庆俊, 孙国柱, 等. 应用鲤鱼鳔进行家兔硬脑膜修补术实验研究 [J]. 河北医科大学学报, 2000, 21(6): 337–340. DOI: 10.3969/j.issn.1007-3205.2000.06.006.

    ZHANG Q S, ZHANG Q J, SUN G Z, et al. Experimental duraplasty with carp swim-bladder in rabbits [J]. Journal of Hebei Medical University, 2000, 21(6): 337–340. DOI: 10.3969/j.issn.1007-3205.2000.06.006.
    [22]
    FINE M L, KING T L, ALI H, et al. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau [J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1841): 20161094. DOI: 10.1098/rspb.2016.1094.
    [23]
    SOBRADILLO B, BOYRA G, MARTINEZ U, et al. Target strength and swimbladder morphology of Mueller’s pearlside (Maurolicus muelleri) [J]. Scientific Reports, 2019, 9(1): 17311. DOI: 10.1038/s41598-019-53819-6.
    [24]
    李彬寒. 鱼鳔源抗钙化心血管生物材料的研究 [D]. 北京: 北京协和医学院, 2020: 48–59. DOI: 10.27648/d.cnki.gzxhu.2020.000519.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (822) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return