Volume 43 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
XU Weizheng, HUANG Yu, LI Yexun, ZHAO Hongtao, ZHENG Xianxu, WANG Yanping. On formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion[J]. Explosion And Shock Waves, 2023, 43(3): 032201. doi: 10.11883/bzycj-2022-0075
Citation: XU Weizheng, HUANG Yu, LI Yexun, ZHAO Hongtao, ZHENG Xianxu, WANG Yanping. On formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion[J]. Explosion And Shock Waves, 2023, 43(3): 032201. doi: 10.11883/bzycj-2022-0075

On formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion

doi: 10.11883/bzycj-2022-0075
  • Received Date: 2022-03-01
  • Rev Recd Date: 2022-08-09
  • Available Online: 2023-02-23
  • Publish Date: 2023-03-05
  • In order to deeply understand the formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion, the optical images showing the local cavitation effect near the wall were obtained by using a self-developed rotating-mirror framing camera with high frequency and high resolution. Numerical simulations were carried out to present the flow-field pressure of shock wave propagation by giving the location of the cavitation area. The Taylor plane wave theory, an efficient method for describing the formation time of local cavitation, was applied to explain the reason that the cavitation did not form in the experimental case 1 that the explosive center was 120 mm from the wall. And the cavitation dynamics theory was used to analyze the local cavitation effect in the experimental case 2 that the explosive center was 80 mm from the wall, by calculating the motion laws of the cavities with different radii under different external environmental pressures. It is indicated that the existence of the rarefaction waves reflected by the interfaces and the expansion of the cavitation nuclei in the water result in the cavitation effects in the near-wall flow field. The external flow-field pressure hardly affects the initial stage of cavitation bubble expansion, but it exerts great influences on the movement behavior of the cavitation bubbles in the later stage. The cavitation bubbles with different sizes will take on different movement behaviors in the low-pressure environment. The cavitation bubbles with the small size less than 10 μm will expand and collapse rapidly in the low-pressure environment so that they have little effects on the flow field cavitation. While the cavitaion bubbles with the large size more than 10 μm may lose the stability, with the result that they have great influences on the flow-field cavition. The random spatial distribution of different-size cavitation nuclei in water is the main reason that the cavitation zone presents an irregular shape during the evolution progress.
  • loading
  • [1]
    汪俊, 刘国振, 刘建湖, 等. 考虑空泡及再加载效应的水下爆炸流固相互作用分析 [J]. 兵工学报, 2014, 35(S2): 157–163.

    WANG J, LIU G Z, LIU J H, et al. Investigation of fluid-structure interaction under underwater explosion with effect of local cavitation and reloading [J]. Acta Armamentarii, 2014, 35(S2): 157–163.
    [2]
    周章涛, 刘建湖, 裴红波, 等. 水下近距和接触爆炸流固耦合作用机理及加载效应研究 [J]. 兵工学报, 2017, 38(S1): 136–145.

    ZHOU Z T, LIU J H, PEI H B, et al. Fluid-structure interaction mechanism and loading effect in close-in and contact underwater explosions [J]. Acta Armamentarii, 2017, 38(S1): 136–145.
    [3]
    TAYLOR G I. The pressure and impulse of submarine explosion waves on plates [J]. Compendium of Underwater Explosion Research, 1941, 1: 1155–1174.
    [4]
    李海涛, 朱锡, 黄晓明, 等. 水下爆炸冲击波作用下空化区域形成的特性研究 [J]. 高压物理学报, 2008, 22(2): 181–186. DOI: 10.11858/gywlxb.2008.02.019.

    LI H T, ZHU X, HUANG X M, et al. On the characteristics of cavitation formation subjected to underwater blast shock wave [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 181–186. DOI: 10.11858/gywlxb.2008.02.019.
    [5]
    李海涛, 朱石坚, 陈志坚, 等. 全入射角度下平板冲击波的壁压载荷及局部空化特性 [J]. 爆炸与冲击, 2014, 34(3): 354–360. DOI: 10.11883/1001-1455(2014)03-0354-07.

    LI H T, ZHU S J, CHEN Z J, et al. Characteristics of wall pressure and cavitation on the plate subjected to underwater explosion shockwaves at any angle of incidence [J]. Explosion and Shock Waves, 2014, 34(3): 354–360. DOI: 10.11883/1001-1455(2014)03-0354-07.
    [6]
    RAJENDRAN R, LEE J M. A comparative damage study of air- and water-backed plates subjected to non-contact underwater explosion [J]. International Journal of Modern Physics B, 2008, 22(09n11): 1311–1318. DOI: 10.1142/S0217979208046700.
    [7]
    FELIPPA C A, DERUNTZ J A. Finite element analysis of shock-induced hull cavitation [J]. Computer Methods in Applied Mechanics and Engineering, 1984, 44(3): 297–337. DOI: 10.1016/0045-7825(84)90134-8.
    [8]
    ZONG Z, ZHAO Y J, YE F, et al. Parallel computing of the underwater explosion cavitation effects on full-scale ship structures [J]. Journal of Marine Science and Application, 2012, 11(4): 469–477. DOI: 10.1007/s11804-012-1157-7.
    [9]
    ZHANG A M, REN S F, LI Q, et al. 3D numerical simulation on fluid-structure interaction of structure subjected to underwater explosion with cavitation [J]. Applied Mathematics and Mechanics, 2012, 33(9): 1191–1206. DOI: 10.1007/s10483-012-1615-8.
    [10]
    SAUREL R, LEMETAYER O. A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation [J]. Journal of Fluid Mechanics, 2001, 431: 239–271. DOI: 10.1017/S0022112000003098.
    [11]
    SANDUSKY H, CHAMBERS P, ZERILLI F, et al. Dynamic measurements of plastic deformation in a water-filled aluminum tube in response to detonation of a small explosives charge [J]. Shock and Vibration, 1999, 6(3): 125–132. DOI: 10.1155/1999/650860.
    [12]
    XIE W F, YOUNG Y L, LIU T G. Multiphase modeling of dynamic fluid-structure interaction during close-in explosion [J]. International Journal for Numerical Methods in Engineering, 2008, 74(6): 1019–1043. DOI: 10.1002/nme.2207.
    [13]
    PARK J. Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube [J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 572–583. DOI: 10.1016/j.ijnaoe.2018.10.002.
    [14]
    JIN Z Y, YIN C Y, CHEN Y, et al. Coupling Runge-Kutta discontinuous Galerkin method to finite element method for compressible multi-phase flow interacting with a deformable sandwich structure [J]. Ocean Engineering, 2017, 130: 597–610. DOI: 10.1016/j.oceaneng.2016.12.013.
    [15]
    许亮, 冯成亮, 刘铁钢. 弹性板水下爆炸冲击载荷的修正虚拟流体方法分析 [J]. 计算物理, 2017, 34(1): 1–9. DOI: 10.3969/j.issn.1001-246X.2017.01.001.

    XU L, FENG C L, LIU T G. Analysis of impact load on elastic plate in underwater explosions with modified ghost fluid method [J]. Chinese Journal of Computational Physics, 2017, 34(1): 1–9. DOI: 10.3969/j.issn.1001-246X.2017.01.001.
    [16]
    王龙侃, 丁松, 李涛, 等. 基于RKDG方法的近壁面水下爆炸空化特性研究 [C]//北京力学会第24届学术年会会议论文集. 北京: 北京力学会, 2018.
    [17]
    张之凡, 王成. 近场水下爆炸空化效应对结构的载荷特性研究 [C]//北京力学会第24届学术年会会议论文集. 北京: 北京力学会, 2018.
    [18]
    Century Dynamics Inc. AUTODYN theory manual version 4.3[Z]. Concord, CA, USA: Century Dynamic Inc. , 2003.
    [19]
    张林夫, 夏维洪. 空化与空蚀 [M]. 南京: 河海大学出版社, 1989.
    [20]
    黄继汤. 空化与空蚀的原理及应用 [M]. 北京: 清华大学出版社, 1991.
    [21]
    杨博凯, 卢义玉, 杨晓峰, 等. 空化水射流空泡溃灭过程的数值分析 [J]. 郑州大学学报(工学版), 2012, 33(4): 60–64. DOI: 10.3969/j.issn.1671-6833.2012.04.014.

    YANG B K, LU Y Y, YANG X F, et al. Numerical analysis on collapse of cavitation bubble in a water jet flow [J]. Journal of Zhengzhou University (Engineering Science), 2012, 33(4): 60–64. DOI: 10.3969/j.issn.1671-6833.2012.04.014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (272) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return