Volume 43 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LIU Kexin, LIU Wei, SUN Yasong. Influence of multi-factor coupling on methane explosion characteristics[J]. Explosion And Shock Waves, 2023, 43(3): 032101. doi: 10.11883/bzycj-2022-0352
Citation: LIU Kexin, LIU Wei, SUN Yasong. Influence of multi-factor coupling on methane explosion characteristics[J]. Explosion And Shock Waves, 2023, 43(3): 032101. doi: 10.11883/bzycj-2022-0352

Influence of multi-factor coupling on methane explosion characteristics

doi: 10.11883/bzycj-2022-0352
  • Received Date: 2022-08-10
  • Rev Recd Date: 2022-11-05
  • Available Online: 2022-11-11
  • Publish Date: 2023-03-05
  • To investigate the influence of multi-factor coupling on the explosion characteristics of methane, an explosive gas test platform with a 1.2 L cylindrical explosive device was designed and established. From the perspective of the maximum explosion pressure, the effects of different equivalence ratios φ (0.6–1.4), initial temperatures T0 (25–200 ℃) and initial pressures p0 (0.1–0.5 MPa) on methane explosion characteristics were comprehensively analyzed. Based on the maximum explosion pressure data by the experiments, a nonlinear regression prediction model among the maximum explosion pressure of methane, equivalence ratio, initial temperature and initial pressure was developed by the 1stOpt software. The results show that: under the coupling effect of the initial temperature and initial pressure, the higher the initial pressure, the more the significant effect of the initial temperature on the maximum explosion pressure. However, with the increasing of the initial temperature, the effect of initial pressure on the maximum explosion pressure is weakened. Under the coupling effect of the initial pressure and equivalence ratio, and within the experimental conditions of the study, when φ<0.9 or φ>1.2, the higher the initial pressure, the more dramatically on the maximum explosion pressure changes. Under the coupling effect of initial temperature and equivalence ratio, and within the experimental conditions of the study, when φ>1.15, the higher the initial temperature, the more significantly the maximum explosion pressure changes. In addition, comparing the prediction results of the 1stOpt prediction model with the experimental results, the relative error is less than 10%. It is indicated that the prediction model can provide high accuracy and good adaptability.
  • loading
  • [1]
    李孥, 王建良, 刘睿, 等. 碳中和目标下天然气产业发展的多情景构想 [J]. 天然气工业, 2021, 41(2): 183–192.

    LI N, WANG J L, LIU R, et al. Multi-scenario conception on the development of natural gas industry under the goal of carbon neutrality [J]. Natural Gas Industry, 2021, 41(2): 183–192.
    [2]
    李鹭光. 中国天然气工业发展回顾与前景展望 [J]. 天然气工业, 2021, 41(8): 1–11. DOI: 10.3787/j.issn.1000-0976.2021.08.001.

    LI L G. Development of natural gas industry in China: Review and prospect [J]. Natural Gas Industry, 2021, 41(8): 1–11. DOI: 10.3787/j.issn.1000-0976.2021.08.001.
    [3]
    周守为, 朱军龙, 单彤文, 等. 中国天然气及LNG产业的发展现状及展望 [J]. 中国海上油气, 2022, 34(1): 1–8. DOI: 10.11935/j.issn.1673-1506.2022.01.001.

    ZHOU S W, ZHU J L, SHAN T W, et al. Development status and outlook of natural gas and LNG industry in China [J]. China Offshore Oil and Gas, 2022, 34(1): 1–8. DOI: 10.11935/j.issn.1673-1506.2022.01.001.
    [4]
    任韶然, 李海奎, 李磊兵, 等. 惰性及特种可燃气体对甲烷爆炸特性的影响实验及分析 [J]. 天然气工业, 2013, 33(10): 110–115. DOI: 10.3787/j.issn.1000-0976.2013.10.019.

    REN S R, LI H K, LI L B, et al. An experimental study of effects of inert and special flammable gases on methane’s explosion characteristic [J]. Natural Gas Industry, 2013, 33(10): 110–115. DOI: 10.3787/j.issn.1000-0976.2013.10.019.
    [5]
    MITU M, BRANDES E. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol/air mixtures in closed spherical vessels [J]. Fuel, 2017, 203: 460–468. DOI: 10.1016/j.fuel.2017.04.124.
    [6]
    丁以斌, 高伟. 当量比和初压对二甲醚-空气爆炸特性的影响研究 [J]. 安全与环境学报, 2021, 21(5): 2076–2080. DOI: 10.13637/j.issn.1009-6094.2020.0347.

    DING Y B, GAO W. Effect of the equivalence ratio and the initial pressure on the particular features of the dimethyl ether-air explosion [J]. Journal of Safety and Environment, 2021, 21(5): 2076–2080. DOI: 10.13637/j.issn.1009-6094.2020.0347.
    [7]
    梁运涛, 曾文. 激波诱导瓦斯爆炸的动力学特性及影响因素 [J]. 爆炸与冲击, 2010, 30(4): 370–376. DOI: 10.11883/1001-1455(2010)04-0370-07.

    LIANG Y T, ZENG W. Kinetic characteristics and influencing factors of gas explosion induced by shock wave [J]. Explosion and Shock Waves, 2010, 30(4): 370–376. DOI: 10.11883/1001-1455(2010)04-0370-07.
    [8]
    余明高, 孔杰, 王燕, 等. 不同浓度甲烷-空气预混气体爆炸特性的试验研究 [J]. 安全与环境学报, 2014, 14(6): 85–90. DOI: 10.13637/j.issn.1009-6094.2014.06.021.

    YU M G, KONG J, WANG Y, et al. Experiment study on explosion characteristic features of the methane-air pre-mixture at different concentrations [J]. Journal of Safety and Environment, 2014, 14(6): 85–90. DOI: 10.13637/j.issn.1009-6094.2014.06.021.
    [9]
    王文涛, 程扬帆, 姚雨乐, 等. 当量比对乙炔/空气爆炸特性和火焰速度的影响 [J]. 中南大学学报(自然科学版), 2022, 53(2): 433–442.

    WANG W T, CHENG Y F, YAO Y L, et al. Effects of equivalence ratios on explosion characteristics and flame speeds of acetylene/air mixture [J]. Journal of Central South University (Science and Technology), 2022, 53(2): 433–442.
    [10]
    TRAN M V, SCRIBANO G, CHONG C T, et al. Simulation of explosion characteristics of syngas/air mixtures [J]. Energy Procedia, 2018, 153: 131–136. DOI: 10.1016/j.egypro.2018.10.024.
    [11]
    王华, 邓军, 葛岭梅. 初始压力对矿井可燃性气体爆炸特性的影响 [J]. 煤炭学报, 2011, 36(3): 423–428. DOI: 10.13225/j.cnki.jccs.2011.03.026.

    WANG H, DENG J, GE L M. Influence of initial pressure on explosion characteristics of flammable gases in coal mine [J]. Journal of China Coal Society, 2011, 36(3): 423–428. DOI: 10.13225/j.cnki.jccs.2011.03.026.
    [12]
    HUANG L, WANG Y, PEI S, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures [J]. Energy, 2019, 186: 115840. DOI: 10.1016/j.energy.2019.07.170.
    [13]
    CUI G, LI Z, YANG C. Experimental study of flammability limits of methane / air mixtures at low temperatures and elevated pressures [J]. Fuel, 2016, 181(1): 1074–1080.
    [14]
    高娜, 胡毅亭, 张延松. 初始温度对甲烷-空气爆炸压力影响的试验研究 [J]. 爆破器材, 2016, 45(3): 26–30. DOI: 10.3969/j.issn.1001-8352.2016.03.006.

    GAO N, HU Y T, ZHANG Y S. Experimental research on methane-air mixtures explosion pressure under normal and elevated initial temperatures [J]. Explosive Materials, 2016, 45(3): 26–30. DOI: 10.3969/j.issn.1001-8352.2016.03.006.
    [15]
    CAMMAROTA F, DI BENEDETTO A, RUSSO P, et al. Experimental analysis of gas explosions at non-atmospheric initial conditions in cylindrical vessel [J]. Process Safety and Environmental Protection, 2010, 88(5): 341–349. DOI: 10.1016/j.psep.2010.05.001.
    [16]
    李润之, 司荣军. 低温环境下甲烷爆炸流场特性模拟 [J]. 爆炸与冲击, 2015, 35(6): 901–906. DOI: 10.11883/1001-1455(2015)06-0901-06.

    LI R Z, SI R J. Simulation study of flow field characteristics of gas explosion in low temperature environment [J]. Explosion and Shock Waves, 2015, 35(6): 901–906. DOI: 10.11883/1001-1455(2015)06-0901-06.
    [17]
    MITTAL M. Explosion pressure measurement of methane-air mixtures in different sizes of confinement [J]. Journal of Loss Prevention in the Process Industries, 2017, 46: 200–208. DOI: 10.1016/j.jlp.2017.02.022.
    [18]
    KUNDU S, ZANGANEH J, MOGHTADERI B. A review on understanding explosions from methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507–523. DOI: 10.1016/j.jlp.2016.02.004.
    [19]
    余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YU M G, YANG X F, ZHENG K, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [20]
    BAI C, CHANG X, ZHANG B. Impacts of turbulence on explosion characteristics of methane-air mixtures with different fuel concentration [J]. Fuel, 2020, 271: 117610. DOI: 10.1016/j.fuel.2020.117610.
    [21]
    AL-MAIDI A A H, RODIONOV Y V, NIKITIN D V, et al. Analysis of the characteristics of natural gas as fuel for vehicles and agricultural tractors [J]. Plant Archives, 2019, 19(1): 1213–1218.
    [22]
    任韶然, 黄丽娟, 张亮, 等. 高压高温甲烷-空气混合物爆炸极限试验 [J]. 中国石油大学学报(自然科学版), 2019, 43(6): 98–103.

    REN S R, HUANG L J, ZHANG L, et al. Experiment on explosion limits of methane-air mixtures at high pressure and high temperature [J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2019, 43(6): 98–103.
    [23]
    DAHOE A E, ZEVENBERGEN J F, LEMKOWITZ S M, et al. Dust explosions in spherical vessels: The role of flame thickness in the validity of the ‘cube-root law’ [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 33–44. DOI: 10.1016/0950-4230(95)00054-2.
    [24]
    高娜, 张延松, 胡毅亭. 温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究 [J]. 爆炸与冲击, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.

    GAO N, ZHANG Y S, HU Y T. Experimental study on methane-air mixtures explosion limits at normal and initial temperatures and pressures [J]. Explosion and Shock Waves, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.
    [25]
    喻健良, 姚福桐, 于小哲, 等. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究 [J]. 爆炸与冲击, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.

    YU J L, YAO F T, YU X Z, et al. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen [J]. Explosion and Shock Waves, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.
    [26]
    赵衡阳. 气体和粉尘爆炸原理[M]. 北京: 北京理工大学出版社, 1996.
    [27]
    DANSON F M, ROWLAND C S. Training a neural network with a canopy reflectance model to estimate crop leaf area index [J]. International Journal of Remote Sensing, 2003, 24(23): 4891–4905. DOI: 10.1080/0143116031000070319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (408) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return