Turn off MathJax
Article Contents
YANG Guoliang, BI Jingjiu, DONG Zhiwen, ZHAO Tongde, ZHAO Jianyu, ZHAO Kangpu. Fracturing mechanism of bedding shale under directional fracture-controlled blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0336
Citation: YANG Guoliang, BI Jingjiu, DONG Zhiwen, ZHAO Tongde, ZHAO Jianyu, ZHAO Kangpu. Fracturing mechanism of bedding shale under directional fracture-controlled blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0336

Fracturing mechanism of bedding shale under directional fracture-controlled blasting

doi: 10.11883/bzycj-2023-0336
  • Received Date: 2023-09-20
  • Rev Recd Date: 2024-01-16
  • Available Online: 2024-03-01
  • The precise control of explosive energy to form an effective radial fracture network in shale is the key of shale gas dynamic extraction. In order to elucidate the damage and fracture mechanisms of shale under directional fracture-controlled blasting and establish a quantifiable relationship for shale damage and destruction under various blasting conditions, explosive tests were conducted on cubic shale specimens with four different fracture angles. The evolution of surface strain fields on the shale specimens was monitored using digital image correlation (DIC) technology. Additionally, the fractal dimensions of surface cracks on the shale specimens at different fracture angles were computed based on the box-counting theory. A programmed analysis of post-blast fragment size distribution was carried out using Matlab software, resulting in the development of a fully automated particle size analysis program with visual delineation of particle sizes. The experimental results demonstrate a negative power-law relationship between crack density and scaled distance within different scaled distances. The angle between the fracture direction and the weak plane of the bedding significantly influences the location of micro-damaged areas. Particularly, when the weak plane of the bedding is parallel to the fracture direction, damaged areas tend to concentrate along the weak plane, affecting the macrocrack propagation path and favoring the formation of a single crack. Energy dissipation at the weak planes of the bedding is identified as a crucial factor leading to suboptimal fracturing effects in shale blasting. When the fracture direction aligns with the weak plane of the bedding, a higher proportion of large fragments is observed in the post-blast specimens. The average fractal dimension of fragment size distribution is the lowest among all groups, measuring only 0.7843. Conversely, when the fracture direction is perpendicular to the weak plane of the bedding, the distribution of post-blast fragment sizes becomes more uniform. The average fractal dimension of fragment size distribution increases to 2.5233, indicating relatively better blasting fragmentation results in such scenarios.
  • loading
  • [1]
    陈军斌. 页岩气储层液体火药高能气体压裂增产关键技术研究 [M]. 北京. 科学出版社, 2017.
    [2]
    索明武. 大庆长垣薄差层二次增效射孔技术研究——以萨中和杏89区为试验区块 [D]. 杭州: 浙江大学, 2008: 1-2.
    [3]
    WAN Y, PAN Z J, TANG S H, et al. An experimental investigation of diffusivity and porosity anisotropy of a Chinese gas shale [J]. Journal of Natural Gas Science and Engineering, 2015, 23: 70–79. DOI: 10.1016/j.jngse.2015.01.024.
    [4]
    NIANDOU H, SHAO J F, HENRY J P, et al. Laboratory investigation of the mechanical behaviour of Tournemire shale [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 3–16. DOI: 10.1016/S1365-1609(97)80029-9.
    [5]
    HORNBY B E, SCHWARTZ L M, HUDSON J A. Anisotropic effective-medium modeling of the elastic properties of shales [J]. Geophysics, 1994, 59(10): 1570–1583. DOI: 10.1190/1.1443546.
    [6]
    LI G F, JIN Z J, LI X, et al. Experimental study on mechanical properties and fracture characteristics of shale layered samples with different mineral components under cyclic loading [J]. Marine and Petroleum Geology, 2023, 150: 106114. DOI: 10.1016/j.marpetgeo.2023.106114.
    [7]
    GUO W H, GUO Y T, YANG H Z, et al. Tensile mechanical properties and AE characteristics of shale in Triaxial Brazilian splitting tests [J]. Journal of Petroleum Science and Engineering, 2022, 219: 111080. DOI: 10.1016/j.petrol.2022.111080.
    [8]
    WANG C Y, LI S J, ZHANG D M, et al. Study on the effects of water content and layer orientation on mechanical properties and failure mechanism of shale [J]. Energy, 2023, 271: 127050. DOI: 10.1016/j.energy.2023.127050.
    [9]
    WANG H, LI Y, CAO S G, et al. Fracture toughness analysis of HCCD specimens of Longmaxi shale subjected to mixed mode I-II loading [J]. Engineering Fracture Mechanics, 2020, 239: 107299. DOI: 10.1016/j.engfracmech.2020.107299.
    [10]
    衡帅, 杨春和, 郭印同, 等. 层理对页岩水力裂缝扩展的影响研究 [J]. 岩石力学与工程学报, 2015, 34(2): 228–237. DOI: 10.13722/j.cnki.jrme.2015.02.002.

    HENG S, YANG C H, GUO Y T, et al. Influence of bedding planes on hydraulic fracture propagation in shale formations [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 228–237. DOI: 10.13722/j.cnki.jrme.2015.02.002.
    [11]
    李玉琳. 龙马溪组层状页岩宏细观破坏行为及模型研究 [D]. 北京: 中国矿业大学(北京), 2019: 92-104.

    LI Y L. Investigation on macroscopic and microscopic failure behavior and model study of layered Longmaxi shale [D]. Beijing: China University of Mining and Technology (Beijing), 2019: 92-104.
    [12]
    SHI X S, YAO W, LIU D A, et al. Experimental study of the dynamic fracture toughness of anisotropic black shale using notched semi-circular bend specimens [J]. Engineering Fracture Mechanics, 2019, 205: 136–151. DOI: 10.1016/j.engfracmech.2018.11.027.
    [13]
    CHONG K P, KURUPPU M D. New specimen for fracture toughness determination for rock and other materials [J]. International Journal of Fracture, 1984, 26(2): R59–R62. DOI: 10.1007/BF01157555.
    [14]
    NEJATI M, AMINZADEH A, AMANN F, et al. Mode I fracture growth in anisotropic rocks: theory and experiment [J]. International Journal of Solids and Structures, 2020, 195: 74–90. DOI: 10.1016/j.ijsolstr.2020.03.004.
    [15]
    JU M H, LI J C, LI J, et al. Loading rate effects on anisotropy and crack propagation of weak bedding plane-rich rocks [J]. Engineering Fracture Mechanics, 2020, 230: 106983. DOI: 10.1016/j.engfracmech.2020.106983.
    [16]
    杨永琦, 张奇, 于慕松, 等. 定向控制断裂爆破技术的研究 [J]. 煤炭学报, 1996, 21(3): 60–63. DOI: 10.3321/j.issn:0253-9993.1996.03.013.

    YANG Y Q, ZHANG Q, YU M S, et al. Technology of directional split blasting [J]. Journal of China Coal Society, 1996, 21(3): 60–63. DOI: 10.3321/j.issn:0253-9993.1996.03.013.
    [17]
    杨仁树, 左进京, 杨国梁. 切缝药包定向控制爆破的试验研究 [J]. 振动与冲击, 2018, 37(24): 24–29. DOI: 10.13465/j.cnki.jvs.2018.24.005.

    YANG R S, ZUO J J, YANG G L. An experimental study on slotted cartridge directional controlled blasting [J]. Journal of Vibration and Shock, 2018, 37(24): 24–29. DOI: 10.13465/j.cnki.jvs.2018.24.005.
    [18]
    王雁冰, 李书萱, 耿延杰, 等. 切缝药包爆破定向断裂机理及围岩损伤特性分析 [J]. 工程科学学报, 2023, 45(4): 521–532. DOI: 10.13374/j.issn2095-9389.2022.04.20.002.

    WANG Y B, LI S X, GENG Y J, et al. Directional fracture mechanism and surrounding rock damage characteristics of slotted cartridge blasting [J]. Chinese Journal of Engineering, 2023, 45(4): 521–532. DOI: 10.13374/j.issn2095-9389.2022.04.20.002.
    [19]
    岳中文, 胡庆文, 陈彪. 爆生裂纹与层理缺陷相互作用的实验研究 [J]. 振动与冲击, 2017, 36(12): 99–104. DOI: 10.13465/j.cnki.jvs.2017.12.017.

    YUE Z W, HU Q W, CHEN B. An experimental study of the interaction between the blast-induced crack and the bedding defect [J]. Journal of Vibration and Shock, 2017, 36(12): 99–104. DOI: 10.13465/j.cnki.jvs.2017.12.017.
    [20]
    谢和平, 高峰, 周宏伟, 等. 岩石断裂和破碎的分形研究 [J]. 防灾减灾工程学报, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001.

    XIE H P, GAO F, ZHOU H W, et al. Fractal fracture and fragmentation in rocks [J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001.
    [21]
    黄志辉. 台阶爆破块度分布测定及其优化研究 [D]. 泉州: 华侨大学, 2005: 22-38.

    HUANG Z H. Study on determination and optimization of the bench blasting fragmentation distribution [D]. Quanzhou: Huaqiao University, 2005: 22-38.
    [22]
    骆浩浩, 杨仁树, 马鑫民, 等. 石禄铁矿扇形中深孔爆破块度分布特征研究 [J]. 采矿与安全工程学报, 2023, 40(2): 371–378. DOI: 10.13545/j.cnki.jmse.2022.0159.

    LUO H H, YANG R S, MA X M, et al. Study on the distribution characteristics of deep hole blasting in the fan-shaped hole of Shilu Iron Mine [J]. Journal of Mining & Safety Engineering, 2023, 40(2): 371–378. DOI: 10.13545/j.cnki.jmse.2022.0159.
    [23]
    杨仁树, 李炜煜, 杨国梁, 等. 炸药类型对富铁矿爆破效果影响的试验研究 [J]. 爆炸与冲击, 2020, 40(6): 065201. DOI: 10.11883/bzycj-2019-0396.

    YANG R S, LI W Y, YANG G L, et al. Experimental study on the blasting effects of rich-iron ore with different explosives [J]. Explosion and Shock Waves, 2020, 40(6): 065201. DOI: 10.11883/bzycj-2019-0396.
    [24]
    吕林. 图像处理技术在岩体块度分析中的应用 [D]. 武汉: 武汉理工大学, 2011: 59-75.

    LV L. The application of photography - image processing in the analysis of rock fragmentation [D]. Wuhan: Wuhan University of Technology, 2011: 59-75.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(2)

    Article Metrics

    Article views (70) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return