Turn off MathJax
Article Contents
CHEN Meiduo, ZHANG Xianglin, YUAN Liangzhu, ZHAO Juyan, WANG Pengfei, MA Hao, XU Songlin. Rough surface morphology of granite subjected to dynamic friction[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0469
Citation: CHEN Meiduo, ZHANG Xianglin, YUAN Liangzhu, ZHAO Juyan, WANG Pengfei, MA Hao, XU Songlin. Rough surface morphology of granite subjected to dynamic friction[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0469

Rough surface morphology of granite subjected to dynamic friction

doi: 10.11883/bzycj-2023-0469
  • Received Date: 2023-12-28
  • Rev Recd Date: 2024-03-06
  • Available Online: 2024-03-26
  • The diffusion behavior of shear instability control under dynamic load is the inducement for the development of local large deformation and the deterioration of macroscopic mechanical properties of rock. Firstly, the energy function of the unstable interface is established; and then based on the generalized variational principle, the interface disturbance analysis is carried out, while the first and second-order variances of the function are taken into consideration. Thus the governing equation of dynamic instability of the interface under shear load is established. Based on the discriminant equation, the influence of shear force and dynamic effect on the angle of the unstable interface is obtained. The results show that the angle of the shear deformation zone increases to a certain extent with the increase of external shear force. With the increase of the local dynamic coefficient, that is, the increase of the local inertial force, the shear band angle decreases obviously. By solving the diffusion equation with the edge displacement, the analytical expression of displacement is obtained, showing that the displacement increases gradually with the increase of loading time. To verify the reliability of the theoretical model and further study the deformation behavior of interface instability and its influence on wave propagation, the evolution of the fine and microscopic morphology of the contact surface during dynamic shear was described by combining with the SHPB rod-beam experiment technique, and an evaluation method for the influence of the evolution of surface contact parameters on mechanical parameters during interface instability is proposed. The numerical analysis model is established, and its result shows that interface instability is the leading condition of local shear failure slip. With the increase of interface thickness and shear force, the local displacement increases. The interfacial shear diffusion behavior greatly reduces the amplitude and changes the frequency of the transmitted wave. This study provides a good theoretical reference for the study of localization deformation and dynamic strength of rocks.
  • loading
  • [1]
    SCHOLZ C H. Wear and gouge formation in brittle faulting [J]. Geology, 1987, 15(6): 493–495. DOI: 10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2.
    [2]
    SCHOLZ C H. Earthquakes and friction laws [J]. Nature, 1998, 391(6662): 37–42. DOI: 10.1038/34097.
    [3]
    COWIE P A, SCHOLZ C H. Growth of faults by accumulation of seismic slip [J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B7): 11085–11095. DOI: 10.1029/92jb00586.
    [4]
    BEELER N M, TULLIS T E, WEEKS J D. The roles of time and displacement in the evolution effect in rock friction [J]. Geophysical Research Letters, 1994, 21(18): 1987–1990. DOI: 10.1029/94GL01599.
    [5]
    徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.

    XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
    [6]
    单俊芳, 徐松林, 张磊, 等. 岩石节理动摩擦过程中的声发射和产热特性研究 [J]. 实验力学, 2020, 35(1): 41–57. DOI: 10.7520/1001-4888-19-121.

    SHAN J F, XU S L, ZHANG L, et al. Investigation on acoustic emission and heat production characteristics on joint surfaces due to dynamic friction [J]. Journal of Experimental Mechanics, 2020, 35(1): 41–57. DOI: 10.7520/1001-4888-19-121.
    [7]
    徐松林, 郑文, 刘永贵, 等. 冲击下花岗岩界面动态摩擦特性实验研究 [J]. 高压物理学报, 2011, 25(3): 207–212. DOI: 10.11858/gywlxb.2011.03.003.

    XU S L, ZHENG W, LIU Y G, et al. Experimental investigation on interface dynamic friction of granite under combined pressure and shear impact loading [J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 207–212. DOI: 10.11858/gywlxb.2011.03.003.
    [8]
    DI TORO G, PENNACCHIONI G. Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps) [J]. Journal of Structural Geology, 2004, 26(10): 1783–1801. DOI: 10.1016/j.jsg.2004.03.001.
    [9]
    RICE J R. Heating and weakening of faults during earthquake slip [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): 311–340. DOI: 10.1029/2005JB004006.
    [10]
    张磊, 徐松林, 施春英. 应用杆束系统研究水泥砂浆节理面的压剪动特性 [J]. 实验力学, 2016, 31(2): 175–185. DOI: 10.7520/1001-4888-15-220.

    ZHANG L, XU S L, SHI C Y. On the dynamic compression-shear characteristics of cement mortar joint surface based on a bunched bar system [J]. Journal of Experimental Mechanics, 2016, 31(2): 175–185. DOI: 10.7520/1001-4888-15-220.
    [11]
    张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化 [J]. 高压物理学报, 2021, 35(3): 031201. DOI: 10.11858/gywlxb.20200640.

    ZHANG L, WANG W S, MIAO C H, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. DOI: 10.11858/gywlxb.20200640.
    [12]
    ZHOU L J, XU S L, SHAN J F, et al. Heterogeneity in deformation of granite under dynamic combined compression/shear loading [J]. Mechanics of Materials, 2018, 123: 1–18. DOI: 10.1016/j.mechmat.2018.04.013.
    [13]
    OKADA M, LIOU N S, PRAKASH V, et al. Tribology of high-speed metal-on-metal sliding at near-melt and fully-melt interfacial temperatures [J]. Wear, 2001, 249(8): 672–686. DOI: 10.1016/S0043-1648(01)00698-6.
    [14]
    BEN-DAVID O, RUBINSTEIN S M, FINEBERG J. Slip-stick and the evolution of frictional strength [J]. Nature, 2010, 463(7277): 76–79. DOI: 10.1038/nature08676.
    [15]
    BEN-DAVID O, FINEBERG J. Static friction coefficient is not a material constant [J]. Physical Review Letters, 2011, 106(25): 254301. DOI: 10.1103/PhysRevLett.106.254301.
    [16]
    DI TORO G, HAN R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471(7339): 494–498. DOI: 10.1038/nature09838.
    [17]
    RUBINO V, ROSAKIS A J, LAPUSTA N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes [J]. Nature Communications, 2017, 8: 15991. DOI: 10.1038/ncomms15991.
    [18]
    PASSELÈGUE F X, SCHUBNEL A, NIELSEN S, et al. From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks [J]. Science, 2013, 340(6137): 1208–1211. DOI: 10.1126/science.1235637.
    [19]
    RUBINSTEIN S M, COHEN G, FINEBERG J. Detachment fronts and the onset of dynamic friction [J]. Nature, 2004, 430(7003): 1005–1009. DOI: 10.1038/nature02830.
    [20]
    RUBINSTEIN S M, COHEN G, FINEBERG J. Dynamics of precursors to frictional sliding [J]. Physical Review Letters, 2007, 98(22): 226103. DOI: 10.1103/PhysRevLett.98.226103.
    [21]
    GEOBEL T H W, SCHORLEMMER D, BECKER T W, et al. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments [J]. Geophysical Research Letters, 2013, 40(10): 2049–2054. DOI: 10.1002/grl.50507.
    [22]
    JOHNSON P A, FERDOWSI B, KAPROTH B M, et al. Acoustic emission and microslip precursors to stick-slip failure in sheared granular material [J]. Geophysical Research Letters, 2013, 40(21): 5627–5631. DOI: 10.1002/2013GL057848.
    [23]
    MENDES R S, MALACARNE L C, SANTOS R P B, et al. Earthquake-like patterns of acoustic emission in crumpled plastic sheets [J]. Europhysics Letters, 2010, 92(2): 29001. DOI: 10.1209/0295-5075/92/29001.
    [24]
    HUANG J Y, XU S L, HU S S. Numerical investigations of the dynamic shear behavior of rough rock joints [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1727–1743. DOI: 10.1007/s00603-013-0502-8.
    [25]
    GAO K, GUYER R, ROUGIER E, et al. From stress chains to acoustic emission [J]. Physical Review Letters, 2019, 123(5): 048003. DOI: 10.1103/PhysRevLett.123.048003.
    [26]
    徐松林, 吴文. 岩土材料局部化变形分岔分析 [J]. 岩石力学与工程学报, 2004, 23(20): 3430–3438. DOI: 10.3321/j.issn:1000-6915.2004.20.007.

    XU S L, WU W. Bifurcation analysis on deformation localization of geomaterial [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3430–3438. DOI: 10.3321/j.issn:1000-6915.2004.20.007.
    [27]
    钱伟长. 非线性力学的新进展-稳定性、分叉、灾变、浑沌 [M]. 武汉: 华中理工大学出版社, 1988.

    QIAN W C. New progress in nonlinear mechanics stability, bifurcation, catastrophe and chaos [M]. Wuhan: Huazhong University of Technology Press, 1988.
    [28]
    OTTOSEN N S, RUNESSON K. Properties of discontinuous bifurcation solutions in elasto-plasticity [J]. International Journal of Solids and Structures, 1991, 27(4): 401–421. DOI: 10.1016/0020-7683(91)90131-X.
    [29]
    FLECK N A, HUTCHINSON J W. A phenomenological theory for strain gradient effects in plasticity [J]. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825–1857. DOI: 10.1016/0022-5096(93)90072-N.
    [30]
    HILL R, HUTCHINSON J W. Bifurcation phenomena in the plane tension test [J]. Journal of the Mechanics and Physics of Solids, 1975, 23(4/5): 239–264. DOI: 10.1016/0022-5096(75)90027-7.
    [31]
    RUDNICKI J W, RICE J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials [J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371–394. DOI: 10.1016/0022-5096(75)90001-0.
    [32]
    YOUNG N J B. Bifurcation phenomena in the plane compression test [J]. Journal of the Mechanics and Physics of Solids, 1976, 24(1): 77–91. DOI: 10.1016/0022-5096(76)90019-3.
    [33]
    CHAU K T. Non-normality and bifurcation in a compressible pressure-sensitive circular cylinder under axisymmetric tesion and compression [J]. International Journal of Solids and Structures, 1992, 29(7): 801–824. DOI: 10.1016/0020-7683(92)90017-N.
    [34]
    徐松林, 吴文, 李廷, 等. 三轴压缩大理岩局部化变形的试验研究及其分岔行为 [J]. 岩土工程学报, 2001, 23(3): 296–301. DOI: 10.3321/j.issn:1000-4548.2001.03.008.

    XU S L, WU W, LI T, et al. Experimental studies on localization and bifurcation behaviors of a marble under triaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 296–301. DOI: 10.3321/j.issn:1000-4548.2001.03.008.
    [35]
    徐松林, 吴文, 张华, 等. 直剪条件下大理岩局部化变形研究 [J]. 岩石力学与工程学报, 2002, 21(6): 766–771. DOI: 10.3321/j.issn:1000-6915.2002.06.002.

    XU S L, WU W, ZHANG H, et al. Testing study on localization of marble under direct shear [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 766–771. DOI: 10.3321/j.issn:1000-6915.2002.06.002.
    [36]
    徐松林, 吴文, 张奇华, 等. 大理岩有限变形分岔分析 [J]. 岩土工程学报, 2002, 24(1): 42–46. DOI: 10.3321/j.issn:1000-4548.2002.01.009.

    XU S L, WU W, ZHANG Q H, et al. Bifurcation analyses of finite/large deformation for a marble [J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 42–46. DOI: 10.3321/j.issn:1000-4548.2002.01.009.
    [37]
    IKEDA K, MUROTA K. Imperfect bifurcation in structures and materials [M]. 3rd ed. Cham: Springer, 2019: 201–291. DOI: 10.1007/978-3-030-21473-9.
    [38]
    IKEDA K, MURAKAMI S, SAIKI I, et al. Image simulation of uniform materials subjected to recursive bifurcation [J]. International Journal of Engineering Science, 2001, 39(17): 1963–1999. DOI: 10.1016/s0020-7225(01)00038-6.
    [39]
    LEE D, TRIANTAFYLLIDIS N, BARBER J R, et al. Surface instability of an elastic half space with material properties varying with depth [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(3): 858–868. DOI: 10.1016/j.jmps.2007.06.010.
    [40]
    李国琛, 耶纳 M. 塑性大应变微结构力学 [M]. 北京: 科学出版社, 1993: 165–282.

    LI G C, JENNA M. Plastic large strain microstructure mechanics [M]. Beijing: Science Press, 1993: 165–282.
    [41]
    MILES J P, NUWAYHID U A. Bifurcation in compressible elastic/plastic cylinders under uniaxial tension [J]. Applied Scientific Research, 1985, 42(1): 33–54. DOI: 10.1007/BF00382529.
    [42]
    CHAU K T. Antisymmetric bifurcations in a compressible pressure-sensitive circular cylinder under axisymmetric tension and compression [J]. Journal of Applied Mechanics, 1993, 60(2): 282–289. DOI: 10.1115/1.2900791.
    [43]
    KIM S M, AL-RUB R K A. Meso-scale computational modeling of the plastic-damage response of cementitious composites [J]. Cement and Concrete Research, 2011, 41(3): 339–358. DOI: 10.1016/j.cemconres.2010.12.002.
    [44]
    袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨 [J]. 爆炸与冲击, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.

    YUAN L Z, MIAO C H, SHAN J F, et al. On strain-rate and inertia effects of concrete samples under impact [J]. Explosion and Shock Waves, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
    [45]
    CHEN M D, XU S L, YUAN L Z, et al. Influence of stress state on dynamic behaviors of concrete under true triaxial confinements [J]. International Journal of Mechanical Sciences, 2023, 253: 108399. DOI: 10.1016/j.ijmecsci.2023.108399.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (120) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return