• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
ZHANG Hongyu, CHI Runqiang, SUN Miao, CAO Wuxiong, HU Diqi, PANG Baojun, ZHANG He, GU Zheng. Research progress on impact ejecting behavior of granular targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0153
Citation: ZHANG Hongyu, CHI Runqiang, SUN Miao, CAO Wuxiong, HU Diqi, PANG Baojun, ZHANG He, GU Zheng. Research progress on impact ejecting behavior of granular targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0153

Research progress on impact ejecting behavior of granular targets

doi: 10.11883/bzycj-2024-0153
  • Received Date: 2024-05-23
  • Rev Recd Date: 2025-02-05
  • Available Online: 2025-02-17
  • Impact ejecting is a critical part of the impact process and plays a pivotal role in engineering applications and scientific analyses in deep space exploration. Its importance extends to space missions such as asteroid surface anchoring for mission stability, impact sampling for scientific analysis of extraterrestrial materials, kinetic impact deflection for planetary defense strategies, and the detailed analysis of ejecta deposition patterns on planetary surfaces to understand surface evolution and regolith dynamics. With small asteroids whose surfaces are commonly covered with regolith, granular targets are employed in laboratory settings to simulate the impact ejecting process. This paper presents a review of the research progress concerning the behavior of impact ejecting on granular targets. The formation process of impact ejecting and methods for describing ejecta curtains are evaluated. An analysis of the dimensional similarity laws governing impact ejecta, along with their applicability and limitations, is conducted. Additionally, the influence of factors, such as target material parameters, impact conditions, target surface morphology, and impactor shape and structure, on impact ejecting behavior is summarized. Finally, existing research challenges are objectively identified, and potential directions for further scientific research about the behavior of impact ejecta on granular targets are proposed.
  • loading
  • [1]
    OSINSKI G R, PIERAZZO E. Impact cratering: processes and products [M]//OSINSKI G R, PIERAZZO E. Impact Cratering: Processes and Products. Chichester: Blackwell Publishing Ltd, 2013: 1–20. DOI: 10.1002/9781118447307.ch1.
    [2]
    BELTON M J S, VEVERKA J, THOMAS P, et al. Galileo encounter with 951 Gaspra: first pictures of an asteroid [J]. Science, 1992, 257(5077): 1647–1652. DOI: 10.1126/science.257.5077.1647.
    [3]
    BELTON M J S, CHAPMAN C R, VEVERKA J, et al. First images of asteroid 243 ida [J]. Science, 1994, 265(5178): 1543–1547. DOI: 10.1126/science.265.5178.1543.
    [4]
    BURATTI B J, THOMAS P C, ROUSSOS E, et al. Close Cassini flybys of Saturn’s ring moons pan, Daphnis, Atlas, Pandora, and Epimetheus [J]. Science, 2019, 364(6445): eaat2349. DOI: 10.1126/science.aat2349.
    [5]
    PORCO C C, BAKER E, BARBARA J, et al. Imaging of titan from the Cassini spacecraft [J]. Nature, 2005, 434(7030): 159–168. DOI: 10.1038/nature03436.
    [6]
    GRUNDY W M, BINZEL R P, BURATTI B J, et al. Surface compositions across Pluto and Charon [J]. Science, 2016, 351(6279): aad9189. DOI: 10.1126/science.aad9189.
    [7]
    ZHU M H, FA W Z, IP W H, et al. Morphology of asteroid (4179) Toutatis as imaged by Chang'E-2 spacecraft [J]. Geophysical Research Letters, 2014, 41(2): 328–333. DOI: 10.1002/2013GL058914.
    [8]
    HOLSAPPLE K A. Catastrophic disruptions and cratering of Solar System bodies: a review and new results [J]. Planetary and Space Science, 1994, 42(12): 1067–1078. DOI: 10.1016/0032-0633(94)90007-8.
    [9]
    PATI J K, REIMOLD W U. Impact cratering—fundamental process in geoscience and planetary science [J]. Journal of Earth System Science, 2007, 116(2): 81–98. DOI: 10.1007/s12040-007-0009-3.
    [10]
    COLLINS G S, MELOSH H J, OSINSKI G R. The impact-cratering process [J]. Elements, 2012, 8(1): 25–30. DOI: 10.2113/gselements.8.1.25.
    [11]
    MICHEL P, MORBIDELLI A. Review of the population of impactors and the impact cratering rate in the inner solar system [J]. Meteoritics & Planetary Science, 2007, 42(11): 1861–1869. DOI: 10.1111/j.1945-5100.2007.tb00545.x.
    [12]
    SUGIMOTO C, TATSUMI E, CHO Y, et al. High-resolution observations of bright boulders on asteroid Ryugu: 1. Size frequency distribution and morphology [J]. Icarus, 2021, 369: 114529. DOI: 10.1016/j.icarus.2021.114529.
    [13]
    GLASS B P, SIMONSON B M. Distal impact ejecta layers: spherules and more [J]. Elements, 2012, 8(1): 43–48. DOI: 10.2113/gselements.8.1.43.
    [14]
    WEISS D K, HEAD J W. Ejecta mobility of layered ejecta craters on Mars: assessing the influence of snow and ice deposits [J]. Icarus, 2014, 233: 131–146. DOI: 10.1016/j.icarus.2014.01.038.
    [15]
    MINTON D A, FASSETT C I, HIRABAYASHI M, et al. The equilibrium size-frequency distribution of small craters reveals the effects of distal ejecta on lunar landscape morphology [J]. Icarus, 2019, 326: 63–87. DOI: 10.1016/j.icarus.2019.02.021.
    [16]
    WULF G, KENKMANN T. High-resolution studies of double-layered ejecta craters: morphology, inherent structure, and a phenomenological formation model [J]. Meteoritics & Planetary Science, 2015, 50(2): 173–203. DOI: 10.1111/maps.12416.
    [17]
    OSINSKI G R, TORNABENE L L, GRIEVE R A F. Impact ejecta emplacement on terrestrial planets [J]. Earth and Planetary Science Letters, 2011, 310(3/4): 167–181. DOI: 10.1016/j.jpgl.2011.08.012.
    [18]
    XIE M G, LIU T T, XU A A. Ballistic sedimentation of impact crater ejecta: implications for the provenance of lunar samples and the resurfacing effect of ejecta on the lunar surface [J]. Journal of Geophysical Research: Planets, 2020, 125(5): e2019JE006113. DOI: 10.1029/2019JE006113.
    [19]
    程彬, 于洋, 宝音贺西. 小天体接触探测颗粒动力学研究进展 [J]. 中国科学: 技术科学, 2021, 51(11): 1299–1314. DOI: 10.1360/SST-2021-0169.

    CHENG B, YANG Y, BAOYIN H X. Recent advances in granular dynamics for small-body touchdown missions [J]. SCIENTIA SINICA Technologica, 2021, 51(11): 1299–1314. DOI: 10.1360/SST-2021-0169.
    [20]
    肖智勇, 岳宗玉, 谢明刚, 等. 月球的撞击历史及其对月表物质的改造 [J]. 矿物岩石地球化学通报, 2023, 42(3): 462–477. DOI: 10.19658/j.issn.1007-2802.2023.42.051.

    XIAO Z Y, YUE Z Y, XIE M G, et al. Impact history of the Moon and its modification of lunar surface materials [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(3): 462–477. DOI: 10.19658/j.issn.1007-2802.2023.42.051.
    [21]
    张荣桥, 黄江川, 赫荣伟, 等. 小行星探测发展综述 [J]. 深空探测学报, 2019, 6(5): 417–423, 455. DOI: 10.15982/j.issn.2095-7777.2019.05.002.

    ZHANG R Q, HUANG J C, HE R W, et al. The development overview of asteroid exploration [J]. Journal of Deep Space Exploration, 2019, 6(5): 417–423, 455. DOI: 10.15982/j.issn.2095-7777.2019.05.002.
    [22]
    李春来, 刘建军, 严韦, 等. 小行星探测科学目标进展与展望 [J]. 深空探测学报, 2019, 6(5): 424–436. DOI: 10.15982/j.issn.2095-7777.2019.05.003.

    LI C L, LIU J J, YAN W, et al. Overview of scientific objectives for minor planets exploration [J]. Journal of Deep Space Exploration, 2019, 6(5): 424–436. DOI: 10.15982/j.issn.2095-7777.2019.05.003.
    [23]
    A'HEARN M F, BELTON M J S, DELAMERE W A, et al. Deep impact: excavating comet Tempel 1 [J]. Science, 2005, 310(5746): 258–264. DOI: 10.1126/science.1118923.
    [24]
    RICHARDSON J E, MELOSH H J, LISSE C M, et al. A ballistics analysis of the deep impact ejecta plume: determining Comet Tempel 1's gravity, mass, and density [J]. Icarus, 2007, 191(2S): 176–209. DOI: 10.1016/j.icarus.2007.08.033.
    [25]
    BENSCH F, MELNICK G J, NEUFELD D A, et al. Submillimeter wave astronomy satellite observations of comet 9P/Tempel 1 and deep impact [J]. Icarus, 2006, 184(2): 602–610. DOI: 10.1016/j.icarus.2006.05.016.
    [26]
    HELDMANN J L, COLAPRETE A, WOODEN D H, et al. LCROSS (Lunar Crater Observation and Sensing Satellite) observation campaign: strategies, implementation, and lessons learned [J]. Space Science Reviews, 2012, 167(1/2/3/4): 93–140. DOI: 10.1007/s11214-011-9759-y.
    [27]
    GLADSTONE G R, HURLEY D M, RETHERFORD K D, et al. LRO-LAMP observations of the LCROSS impact plume [J]. Science, 2010, 330(6003): 472–476. DOI: 10.1126/science.1186474.
    [28]
    COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS ejecta plume [J]. Science, 2010, 330(6003): 463–468. DOI: 10.1126/science.1186986.
    [29]
    郑永春, 张锋, 付晓辉, 等. 月球上的水: 探测历程与新的证据 [J]. 地质学报, 2011, 85(7): 1069–1078.

    ZHENG Y C, ZHANG F, FU X H, et al. Water on the moon: exploration history and new evidence [J]. Acta Geologica Sinica, 2011, 85(7): 1069–1078.
    [30]
    COLAPRETE A , ENNICO K , WOODEN D, et al. Water and More: An Overview of LCROSS Impact Results[C]//Lunar & Planetary Institute Science Conference Abstracts. Bulletin of the American Astronomical Society, 2010: 42.
    [31]
    ENNICO-SMITH K. Lunar crater observation and sensing satellite (LCROSS) [M]//CUDNIK B. Encyclopedia of Lunar Science. Cham: Springer, 2023: 506–520. DOI: 10.1007/978-3-319-14541-9_24.
    [32]
    BOTTKE JR W F, DURDA D D, NESVORNÝ D, et al. The fossilized size distribution of the main asteroid belt [J]. Icarus, 2005, 175(1): 111–140. DOI: 10.1016/j.icarus.2004.10.026.
    [33]
    IZIDORO A, RAYMOND S N, PIERENS A, et al. The asteroid belt as a relic from a chaotic early solar system [J]. The Astrophysical Journal, 2016, 833(1): 40. DOI: 10.3847/1538-4357/833/1/40.
    [34]
    PARKER E T, CHAN Q H S, GLAVIN D P, et al. Non-protein amino acids identified in carbon-rich Hayabusa particles [J]. Meteoritics & Planetary Science, 2022, 57(4): 776–793. DOI: 10.1111/maps.13794.
    [35]
    NARAOKA H, TAKANO Y, DWORKIN J P, et al. Soluble organic compounds in asteroid 162173 Ryugu [C]// LISA G, EILEEN S. 53rd Lunar and Planetary Science Conference. USA, 2022, 2678: 1781.
    [36]
    KITAZATO K, MILLIKEN R E, IWATA T, et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy [J]. Science, 2019, 364(6437): 272–275. DOI: 10.1126/science.aav7432.
    [37]
    HAMILTON V E, SIMON A A, CHRISTENSEN P R, et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu [J]. Nature Astronomy, 2019, 3(4): 332–340. DOI: 10.1038/s41550-019-0722-2.
    [38]
    MARTY B, ALTWEGG K, BALSIGER H, et al. Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere [J]. Science, 2017, 356(6342): 1069–1072. DOI: 10.1126/science.aal3496.
    [39]
    王兴, 刘建军. 小行星环境特性分析与研究现状 [J]. 航天器环境工程, 2019, 36(6): 533–541. DOI: 10.12126/see.2019.06.002.

    WANG X, LIU J J. Analyses of the environmental characteristics of asteroids and the current research state [J]. Spacecraft Environment Engineering, 2019, 36(6): 533–541. DOI: 10.12126/see.2019.06.002.
    [40]
    季江徽, 胡寿村. 太阳系小天体表面环境综述 [J]. 航天器环境工程, 2019, 36(6): 519–532. DOI: 10.12126/see.2019.06.001.

    JI J H, HU S C. A review of the surface environment of small bodies in solar system [J]. Spacecraft Environment Engineering, 2019, 36(6): 519–532. DOI: 10.12126/see.2019.06.001.
    [41]
    RIVKIN A. An overview of the asteroids and meteorites [M]//OSWALT T D, FRENCH L M, KALAS P. Planets, Stars and Stellar Systems. Dordrecht: Springer, 2013: 376–429. DOI: 10.1007/978-94-007-5606-9_8.
    [42]
    KAWAGUCHI J, FUJIWARA A, UESUGI T. Hayabusa—its technology and science accomplishment summary and Hayabusa-2 [J]. Acta Astronautica, 2008, 62(10/11): 639–647. DOI: 10.1016/j.actaastro.2008.01.028.
    [43]
    TACHIBANA S, ABE M, ARAKAWA M, et al. Hayabusa2: scientific importance of samples returned from C-type near-Earth asteroid (162173) 1999 JU3 [J]. Geochemical Journal, 2014, 48(6): 571–587. DOI: 10.2343/geochemj.2.0350.
    [44]
    TSUDA Y, YOSHIKAWA M, ABE M, et al. System design of the Hayabusa 2—Asteroid sample return mission to 1999 JU3 [J]. Acta Astronautica, 2013, 91: 356–362. DOI: 10.1016/j.actaastro.2013.06.028.
    [45]
    GAL-EDD J, CHEUVRONT A. The OSIRIS-REx asteroid sample return mission operations design [C]//Proceedings of 2015 IEEE Aerospace Conference. Big Sky: IEEE, 2015: 1–9. DOI: 10.1109/AERO.2015.7118883.
    [46]
    LAURETTA D S, BALRAM-KNUTSON S S, BESHORE E, et al. OSIRIS-REx: sample return from asteroid (101955) Bennu [J]. Space Science Reviews, 2017, 212(1/2): 925–984. DOI: 10.1007/s11214-017-0405-1.
    [47]
    SCHMIDT N. Planetary defense: global collaboration for defending earth from asteroids and comets [M]. Cham: Springer, 2018. DOI: 10.1007/978-3-030-01000-3.
    [48]
    HOLSAPPLE K A, HOUSEN K R. Momentum transfer in asteroid impacts. I. Theory and scaling [J]. Icarus, 2012, 221(2): 875–887. DOI: 10.1016/j.icarus.2012.09.022.
    [49]
    CHENG A F, MICHEL P, JUTZI M, et al. Asteroid impact & deflection assessment mission: kinetic impactor [J]. Planetary and Space Science, 2016, 121: 27–35. DOI: 10.1016/j.pss.2015.12.004.
    [50]
    张熇, 顾征, 韩承志. 小行星撞击防御任务分析与设计 [J]. 深空探测学报(中英文), 2023, 10(4): 387–396. DOI: 10.15982/j.issn.2096-9287.2023.20230025.

    ZHANG H, GU Z, HAN C Z. Analysis and design of asteroid impact defense mission [J]. Journal of Deep Space Exploration, 2023, 10(4): 387–396. DOI: 10.15982/j.issn.2096-9287.2023.20230025.
    [51]
    HOUSEN K R, HOLSAPPLE K A. Experimental measurements of momentum transfer in hypervelocity collisions [C]//46th Annual Lunar and Planetary Science Conference. USA, 2015 (1832): 2894.
    [52]
    RADUCAN S D, DAVISON T M, COLLINS G S. Ejecta distribution and momentum transfer from oblique impacts on asteroid surfaces [J]. Icarus, 2022, 374: 114793. DOI: 10.1016/j.icarus.2021.114793.
    [53]
    RIVKIN A S, CHABOT N L, STICKLE A M, et al. The double asteroid redirection test (DART): planetary defense investigations and requirements [J]. The Planetary Science Journal, 2021, 2(5): 173. DOI: 10.3847/PSJ/ac063e.
    [54]
    THOMAS C A, NAIDU S P, SCHEIRICH P, et al. Orbital period change of Dimorphos due to the DART kinetic impact [J]. Nature, 2023, 616(7957): 448–451. DOI: 10.1038/s41586-023-05805-2.
    [55]
    CHENG A F, AGRUSA H F, BARBEE B W, et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos [J]. Nature, 2023, 616(7957): 457–460. DOI: 10.1038/s41586-023-05878-z.
    [56]
    VEVERKA J, THOMAS P C, ROBINSON M, et al. Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith [J]. Science, 2001, 292(5516): 484–488. DOI: 10.1126/science.1058651.
    [57]
    FUJIWARA A, KAWAGUCHI J, YEOMANS D K, et al. The rubble-pile asteroid Itokawa as observed by Hayabusa [J]. Science, 2006, 312(5778): 1330–1334. DOI: 10.1126/science.1125841.
    [58]
    SCHMIDT R M, HOUSEN K R. Some recent advances in the scaling of impact and explosion cratering [J]. International Journal of Impact Engineering, 1987, 5(1/2/3/4): 543–560. DOI: 10.1016/0734-743X(87)90069-8.
    [59]
    SCHMIDT R M, HOLSAPPLE K A. Theory and experiments on centrifuge cratering [J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B1): 235–252. DOI: 10.1029/JB085iB01p00235.
    [60]
    GAULT D E, SHOEMAKER E M, MOORE H J. Spray ejected from the lunar surface by meteoroid impact [M]. USA, National Aeronautics and Space Administration, 1963.
    [61]
    STÖFFLER D, GAULT D E, WEDEKIND J, et al. Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta [J]. Journal of Geophysical Research: Planets, 1975, 80(29): 4062–4077. DOI: 10.1029/JB080i029p04062.
    [62]
    HOLSAPPLE K A, SCHMIDT R M. On the scaling of crater dimensions: 2. Impact processes [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B3): 1849–1870. DOI: 10.1029/JB087iB03p01849.
    [63]
    HOUSEN K R, SCHMIDT R M, HOLSAPPLE K A. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis [J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B3): 2485–2499. DOI: 10.1029/JB088iB03p02485.
    [64]
    HOLSAPPLE K A. The scaling of impact processes in planetary sciences [J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 333–373. DOI: 10.1146/annurev.ea.21.050193.002001.
    [65]
    HOUSEN K R, SWEET W J, HOLSAPPLE K A. Impacts into porous asteroids [J]. Icarus, 2018, 300: 72–96. DOI: 10.1016/j.icarus.2017.08.019.
    [66]
    HOLSAPPLE K A, SCHMIDT R M. Point source solutions and coupling parameters in cratering mechanics [J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B7): 6350–6376. DOI: 10.1029/JB092iB07p06350.
    [67]
    SCHEERES D J, HARTZELL C M, SÁNCHEZ P, et al. Scaling forces to asteroid surfaces: the role of cohesion [J]. Icarus, 2010, 210(2): 968–984. DOI: 10.1016/j.icarus.2010.07.009.
    [68]
    MELOSH H J. Impact ejection, spallation, and the origin of meteorites [J]. Icarus, 1984, 59(2): 234–260. DOI: 10.1016/0019-1035(84)90026-5.
    [69]
    刘文近, 张庆明, 马晓荷, 等. 近地小天体对地撞击成坑模型研究进展 [J]. 爆炸与冲击, 2021, 41(12): 121404. DOI: 10.11883/bzycj-2021-0255.

    LIU W J, ZHANG Q M, MA X H, et al. A review of the models of near-Earth object impact cratering on Earth [J]. Explosion and Shock Waves, 2021, 41(12): 121404. DOI: 10.11883/bzycj-2021-0255.
    [70]
    COLLINS A L, ADDISS J W, WALLEY S M, et al. The effect of rod nose shape on the internal flow fields during the ballistic penetration of sand [J]. International Journal of Impact Engineering, 2011, 38(12): 951–963. DOI: 10.1016/j.ijimpeng.2011.08.002.
    [71]
    SUN M, LI J C, ZHANG H Y, et al. Effect of relative density and grain size on the internal flow field during the ballistic penetration of sand [J]. International Journal of Impact Engineering, 2024, 185: 104859. DOI: 10.1016/j.ijimpeng.2023.104859.
    [72]
    DEBOEUF S, GONDRET P, RABAUD M. Dynamics of grain ejection by sphere impact on a granular bed [J]. Physical Review E, 2009, 79(4): 041306. DOI: 10.1103/PhysRevE.79.041306.
    [73]
    HAWKE B R, BLEWETT D T, LUCEY P G, et al. The origin of lunar crater rays [J]. Icarus, 2004, 170(1): 1–16. DOI: 10.1016/j.icarus.2004.02.013.
    [74]
    HARGITAI H, KERESZTURI Á. Encyclopedia of planetary landforms [M]. New York: Springer, 2015.
    [75]
    KADONO T, SUZUKI A I, WADA K, et al. Crater-ray formation by impact-induced ejecta particles [J]. Icarus, 2015, 250: 215–221. DOI: 10.1016/j.icarus.2014.11.030.
    [76]
    SABUWALA T, BUTCHER C, GIOIA G, et al. Ray systems in granular cratering [J]. Physical Review Letters, 2018, 120(26): 264501. DOI: 10.1103/PhysRevLett.120.264501.
    [77]
    PACHECO-VÁZQUEZ F. Ray systems and craters generated by the impact of nonspherical projectiles [J]. Physical Review Letters, 2019, 122(16): 164501. DOI: 10.1103/PhysRevLett.122.164501.
    [78]
    HOUSEN K R, HOLSAPPLE K A. Ejecta from impact craters [J]. Icarus, 2011, 211(1): 856–875. DOI: 10.1016/j.icarus.2010.09.017.
    [79]
    KATSURAGI H. Physics of soft impact and cratering [M]. Tokyo: Springer, 2016. DOI: 10.1007/978-4-431-55648-0.
    [80]
    MAXWELL D E. Simple Z model for cratering, ejection, and the overturned flap [C]//Impact and Explosion Cratering: Planetary and Terrestrial Implications. 1977: 1003–1008.
    [81]
    ORPHAL D L. Calculations of explosion cratering. II-cratering mechanics and phenomenology [C]//Impact and Explosion Cratering: Planetary and Terrestrial Implications. 1977: 907–917.
    [82]
    O'KEEFE J D, AHRENS T J. The effect of gravity on impact crater excavation time and maximum depth; Comparison with experiment [C]//Lunar and Planetary Science. USA, 1979: 934–936.
    [83]
    O’KEEFE J D, AHRENS T J. Impact cratering: the effect of crustal strength and planetary gravity [J]. Reviews of Geophysics, 1981, 19(1): 1–12. DOI: 10.1029/RG019i001p00001.
    [84]
    AUSTIN M G, THOMSEN J M, RUHL S F, et al. Calculational investigation of impact cratering dynamics: material motions during the crater growth period [J]. 1980.
    [85]
    ANDERSON J L B, SCHULTZ P H, HEINECK J T. Experimental ejection angles for oblique impacts: Implications for the subsurface flow-field [J]. Meteoritics & Planetary Science, 2004, 39(2): 303–320. DOI: 10.1111/j.1945-5100.2004.tb00342.x.
    [86]
    CROFT S K. Cratering flow fields: implications for the excavation and transient expansion stages of crater formation [C]//11th Lunar and Planetary Science Conference. 1980: 2347–2378.
    [87]
    TSUJIDO S, ARAKAWA M, SUZUKI A I, et al. Ejecta velocity distribution of impact craters formed on quartz sand: effect of projectile density on crater scaling law [J]. Icarus, 2015, 262: 79–92. DOI: 10.1016/j.icarus.2015.08.035.
    [88]
    JODAR B, HÉBERT D, AUBERT B, et al. Impacts into porous graphite: an investigation on crater formation and ejecta distribution [J]. International Journal of Impact Engineering, 2021, 152: 103842. DOI: 10.1016/j.ijimpeng.2021.103842.
    [89]
    PRIEUR N C, ROLF T, LUTHER R, et al. The effect of target properties on transient crater scaling for simple craters [J]. Journal of Geophysical Research: Planets, 2017, 122(8): 1704–1726. DOI: 10.1002/2017JE005283.
    [90]
    LUTHER R, ZHU M H, COLLINS G, et al. Effect of target properties and impact velocity on ejection dynamics and ejecta deposition [J]. Meteoritics & Planetary Science, 2018, 53(8): 1705–1732. DOI: 10.1111/maps.13143.
    [91]
    MARSTON J O, LI E Q, THORODDSEN S T. Evolution of fluid-like granular ejecta generated by sphere impact [J]. Journal of Fluid Mechanics, 2012, 704: 5–36. DOI: 10.1017/jfm.2012.141.
    [92]
    LOHSE D, BERGMANN R, MIKKELSEN R, et al. Impact on soft sand: void collapse and jet formation [J]. Physical Review Letters, 2004, 93(19): 198003. DOI: 10.1103/PhysRevLett.93.198003.
    [93]
    MARSTON J O, SEVILLE J P K, CHEUN Y V, et al. Effect of packing fraction on granular jetting from solid sphere entry into aerated and fluidized beds [J]. Physics of Fluids, 2008, 20(2): 023301. DOI: 10.1063/1.2835008.
    [94]
    MARSTON J O, THORODDSEN S T. Investigation of granular impact using positron emission particle tracking [J]. Powder Technology, 2015, 274: 284–288. DOI: 10.1016/j.powtec.2015.01.033.
    [95]
    GORDILLO J M, GEKLE S. Generation and breakup of Worthington jets after cavity collapse. part 2. tip breakup of stretched jets [J]. Journal of Fluid Mechanics, 2010, 663: 331–346. DOI: 10.1017/S0022112010003538.
    [96]
    NEIDERBACH M, SUO B C, WRIGHT E, et al. Surface particle motions excited by a low velocity normal impact into a granular medium [J]. Icarus, 2023, 390: 115301. DOI: 10.1016/j.icarus.2022.115301.
    [97]
    LOVE S G, HÖRZ F, BROWNLEE D E. Target porosity effects in impact cratering and collisional disruption [J]. Icarus, 1993, 105(1): 216–224. DOI: 10.1006/icar.1993.1119.
    [98]
    HOUSEN K R, VOSS M E. Ejecta from impact craters in porous materials [C]//32nd Annual Lunar and Planetary Science Conference. USA, 2001: 1617.
    [99]
    HOUSEN K R. Material motions and ejection velocities for impacts in porous targets [C]//34th Annual Lunar and Planetary Science Conference. USA, 2003: 1300.
    [100]
    CHAPMAN C R, MERLINE W J, THOMAS P. Cratering on mathilde [J]. Icarus, 1999, 140(1): 28–33. DOI: 10.1006/icar.1999.6119.
    [101]
    THOMAS P C, VEVERKA J, BELL III J F, et al. Mathilde: size, shape, and geology [J]. Icarus, 1999, 140(1): 17–27. DOI: 10.1006/icar.1999.6121.
    [102]
    THOMAS P C, ARMSTRONG J W, ASMAR S W, et al. Hyperion's sponge-like appearance [J]. Nature, 2007, 448(7149): 50–53. DOI: 10.1038/nature05779.
    [103]
    YUE Z, JOHNSON B C, MINTON D A, et al. Projectile remnants in central peaks of lunar impact craters [J]. Nature Geoscience, 2013, 6(6): 435–437. DOI: 10.1038/ngeo1828.
    [104]
    CINTALA M J, BERTHOUD L, HÖRZ F. Ejection-velocity distributions from impacts into coarse-grained sand [J]. Meteoritics & Planetary Science, 1999, 34(4): 605–623. DOI: 10.1111/j.1945-5100.1999.tb01367.x.
    [105]
    Anderson J L B, Cintala M J, Siebenaler S A, et al. Ejecta-and size-scaling considerations from impacts of glass projectiles into sand[C]//Lunar and Planetary Science Conference. 2007.
    [106]
    BARNOUIN O S, CINTALA M J, CRAWFORD D A. Investigating the effects of shock duration and grain size on ejecta excavation and crater growth [C]//33rd Lunar and Planetary Science. USA, 2002: 1738.
    [107]
    BARNOUIN O S, DALY R T, CINTALA M J, et al. Impacts into coarse-grained spheres at moderate impact velocities: implications for cratering on asteroids and planets [J]. Icarus, 2019, 325: 67–83. DOI: 10.1016/j.icarus.2019.02.004.
    [108]
    ASPHAUG E, OSTRO S J, HUDSON R S, et al. Disruption of kilometre-sized asteroids by energetic collisions [J]. Nature, 1998, 393(6684): 437–440. DOI: 10.1038/30911.
    [109]
    SZARF K, COMBE G, VILLARD P. Influence of the grains shape on the mechanical behavior of granular materials [J]. AIP Conference Proceedings, 2009, 1145(1): 357–360. DOI: 10.1063/1.3179932.
    [110]
    KIM B S, SAKAKIBARA T, PARK S W, et al. Effects of grain shape on mechanical behavior of granular materials using DEM analysis [J]. KSCE Journal of Civil Engineering, 2021, 25(6): 1939–1950. DOI: 10.1007/s12205-021-0582-z.
    [111]
    TANG X, YANG J. Wave propagation in granular material: what is the role of particle shape? [J]. Journal of the Mechanics and Physics of Solids, 2021, 157: 104605. DOI: 10.1016/j.jmps.2021.104605.
    [112]
    YAMAMOTO S, OKABE N, KADONO T, et al. Measurements of ejecta velocity distribution by a high-speed video camera [C]// 36th Annual Lunar and Planetary Science Conference. USA, 2005: 1600.
    [113]
    GUO F, ZHANG H, YU Y, et al. Slow intrusion experiments into granular media under microgravity [J]. Advances in Space Research, 2024, 73(5): 2774–2787. DOI: 10.1016/j.asr.2023.12.004.
    [114]
    YASUI M, MATSUMOTO E, ARAKAWA M. Experimental study on impact-induced seismic wave propagation through granular materials [J]. Icarus, 2015, 260: 320–331. DOI: 10.1016/j.icarus.2015.07.032.
    [115]
    KUROSAWA K, OKAMOTO T, GENDA H. Hydrocode modeling of the spallation process during hypervelocity impacts: implications for the ejection of Martian meteorites [J]. Icarus, 2018, 301: 219–234. DOI: 10.1016/j.icarus.2017.09.015.
    [116]
    QUILLEN A C, NEIDERBACH M, SUO B C, et al. Propagation and attenuation of pulses driven by low velocity normal impacts in granular media [J]. Icarus, 2022, 386: 115139. DOI: 10.1016/j.icarus.2022.115139.
    [117]
    HERMALYN B, SCHULTZ P H, SHIRLEY M, et al. Scouring the surface: ejecta dynamics and the LCROSS impact event [J]. Icarus, 2012, 218(1): 654–665. DOI: 10.1016/j.icarus.2011.12.025.
    [118]
    HERMALYN B, SCHULTZ P H. Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: effects of projectile density on early-time coupling and crater growth [J]. Icarus, 2011, 216(1): 269–279. DOI: 10.1016/j.icarus.2011.09.008.
    [119]
    MATSUE K, YASUI M, ARAKAWA M, et al. Measurements of seismic waves induced by high-velocity impacts: implications for seismic shaking surrounding impact craters on asteroids [J]. Icarus, 2020, 338: 113520. DOI: 10.1016/j.icarus.2019.113520.
    [120]
    BOTTKE JR W F, LOVE S G, TYTELL D, et al. Interpreting the elliptical crater populations on Mars, Venus, and the Moon [J]. Icarus, 2000, 145(1): 108–121. DOI: 10.1006/icar.1999.6323.
    [121]
    PIERAZZO E, MELOSH H J. Understanding oblique impacts from experiments, observations, and modeling [J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 141–167. DOI: 10.1146/annurev.earth.28.1.141.
    [122]
    HERRICK R R, FORSBERG-TAYLOR N K. The shape and appearance of craters formed by oblique impact on the Moon and Venus [J]. Meteoritics & Planetary Science, 2003, 38(11): 1551–1578. DOI: 10.1111/j.1945-5100.2003.tb00001.x.
    [123]
    HESSEN K K, HERRICK R R, YAMAMOTO S, et al. Low-velocity oblique impact experiments in a vacuum [C]// 38th Lunar and Planetary Science. USA, 2007: 2141.
    [124]
    SHUVALOV V. Ejecta deposition after oblique impacts: an influence of impact scale [J]. Meteoritics & Planetary Science, 2011, 46(11): 1713–1718. DOI: 10.1111/j.1945-5100.2011.01259.x.
    [125]
    SCHULTZ P H. Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan [J]. Journal of Geophysical Research: Planets, 1992, 97(E10): 16183–16248. DOI: 10.1029/92JE01508.
    [126]
    ANDERSON J L B, SCHULTZ P H, HEINECK J T. Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry [J]. Journal of Geophysical Research: Planets, 2003, 108(E8): 5094. DOI: 10.1029/2003JE002075.
    [127]
    HERMALYN B, SCHULTZ P H, HEINECK J T. Experimental studies of the ejecta velocity distribution from oblique impacts: Towards an analytical model[C]// 43rd Annual Lunar and Planetary Science Conference. 2012 (1659): 2022.
    [128]
    ANDERSON J L B, SCHULTZ P H. Flow-field center migration during vertical and oblique impacts [J]. International Journal of Impact Engineering, 2006, 33(1–12): 35–44. DOI: 10.1016/j.ijimpeng.2006.09.022.
    [129]
    OBERBECK V R. Laboratory simulation of impact cratering with high explosives [J]. Journal of Geophysical Research: Solid Earth, 1971, 76(23): 5732–5749. DOI: 10.1029/JB076i023p05732.
    [130]
    OBERBECK V R. Application of high explosion cratering data to planetary problems [C]// Impact and Explosion Cratering: Planetary and Terrestrial Implications. 1977: 45–65.
    [131]
    ANDERSON J L B, SCHULTZ P H, HEINECK J T. Evolving flow-field centers in oblique impacts [C]// 33rd Lunar and Planetary Science. USA, 2002: 1762.
    [132]
    JAUMANN R, WILLIAMS D A, BUCZKOWSKI D L, et al. Vesta’s shape and morphology [J]. Science, 2012, 336(6082): 687–690. DOI: 10.1126/science.1219122.
    [133]
    THOMAS N, BARBIERI C, KELLER H U, et al. The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA’s Rosetta spacecraft [J]. Planetary and Space Science, 2012, 66(1): 96–124. DOI: 10.1016/j.pss.2011.10.003.
    [134]
    ASCHAUER J, KENKMANN T. Impact cratering on slopes [J]. Icarus, 2017, 290: 89–95. DOI: 10.1016/j.icarus.2017.02.021.
    [135]
    ELBESHAUSEN D, WÜNNEMANN K, SIERKS H, et al. The effect of topography on the impact cratering process on Lutetia [C]//43rd Lunar and Planetary Science Conference. USA, 2012: 1867.
    [136]
    ELBESHAUSEN D, UND KROHN K, WÜNNEMANN K, et al. Bimodal craters on Vesta: impacts on slopes studied by numerical simulations [C]//44th Lunar and Planetary Science Conference. USA, 2013: 1903.
    [137]
    TAKIZAWA S, KATSURAGI H. Scaling laws for the oblique impact cratering on an inclined granular surface [J]. Icarus, 2020, 335: 113409. DOI: 10.1016/j.icarus.2019.113409.
    [138]
    SHUVALOV V. A mechanism for the production of crater rays [J]. Meteoritics & Planetary Science, 2012, 47(2): 262–267. DOI: 10.1111/j.1945-5100.2011.01324.x.
    [139]
    OKAWA H, ARAKAWA M, YASUI M, et al. Effect of boulder size on ejecta velocity scaling law for cratering and its implication for formation of tiny asteroids [J]. Icarus, 2022, 387: 115212. DOI: 10.1016/j.icarus.2022.115212.
    [140]
    ORMÖ J, RADUCAN S D, JUTZI M, et al. Boulder exhumation and segregation by impacts on rubble-pile asteroids [J]. Earth and Planetary Science Letters, 2022, 594: 117713. DOI: 10.1016/j.jpgl.2022.117713.
    [141]
    GRANINGER D, STICKLE A, OWEN J M, et al. Simulating hypervelocity impacts into rubble pile structures for planetary defense [J]. International Journal of Impact Engineering, 2023, 180: 104670. DOI: 10.1016/j.ijimpeng.2023.104670.
    [142]
    张鸿宇, 迟润强, 孙淼, 等. 砾石堆结构超高速撞击溅射物特性 [J]. 深空探测学报(中英文), 2023, 10(4): 428–435. DOI: 10.15982/j.issn.2096-9287.2023.20230021.

    ZHANG H Y, CHI R Q, SUN M, et al. Research on characteristics of hypervelocity impact-induced ejecta in rubble-pile targets [J]. Journal of Deep Space Exploration, 2023, 10(4): 428–435. DOI: 10.15982/j.issn.2096-9287.2023.20230021.
    [143]
    NEWHALL K A, DURIAN D J. Projectile-shape dependence of impact craters in loose granular media [J]. Physical Review E, 2003, 68(6): 060301. DOI: 10.1103/PhysRevE.68.060301.
    [144]
    GOLDMAN D I, UMBANHOWAR P. Scaling and dynamics of sphere and disk impact into granular media [J]. Physical Review E, 2008, 77(2): 021308. DOI: 10.1103/PhysRevE.77.021308.
    [145]
    CHENG B, YU Y, BAOYIN H X. Asteroid surface impact sampling: dependence of the cavity morphology and collected mass on projectile shape [J]. Scientific Reports, 2017, 7(1): 10004. DOI: 10.1038/s41598-017-10681-8.
    [146]
    ADS A, ISKANDER M, BLESS S. Soil–projectile interaction during penetration of a transparent clay simulant [J]. Acta Geotechnica, 2020, 15(4): 815–826. DOI: 10.1007/s11440-020-00921-z.
    [147]
    SCHWARTZ S R, MICHEL P, RICHARDSON D C, et al. Low-speed impact simulations into regolith in support of asteroid sampling mechanism design I: comparison with 1-g experiments [J]. Planetary and Space Science, 2014, 103: 174–183. DOI: 10.1016/j.pss.2014.07.013.
    [148]
    KADONO T, SUZUKI A I, SUETSUGU R, et al. Observation of vertically ejected plumes generated by the impact of hollow projectiles at various velocities [J]. The Planetary Science Journal, 2023, 4(5): 82. DOI: 10.3847/PSJ/accbbb.
    [149]
    OGAWA K, TAKEDA S, KOBAYASHI H. Dynamic simulations of projectile penetration into granular medium [J]. Mechanical Engineering Journal, 2015, 2(1): 14–00427. DOI: 10.1299/mej.14-00427.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)

    Article Metrics

    Article views (140) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return