Citation: | GUO Ding, SUN Yuanbo, GE Yunxin, WANG Cheng, SHAO Jiankun. Numerical study of shock wave generated by hydrogen-oxygen detonation in a large shock tube[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0300 |
[1] |
杨鑫, 石少卿, 程鹏飞, 等. 爆炸冲击波在空气中传播规律的经验公式对比及数值模拟 [J]. 四川建筑, 2007, 27(5): 71–73. DOI: 10.3969/j.issn.1007-8983.2007.05.033.
|
[2] |
陈宏, 赵伟, 林建民, 等. 用双爆轰驱动的激波管技术 [C]//第十届全国激波与激波管学术讨论会论文集. 黄山: 中国力学学会直属激波与激波管专业组, 2002.
|
[3] |
张玉磊, 王胜强, 袁建飞, 等. 不同量级TNT爆炸冲击波参数相似律实验研究 [J]. 弹箭与制导学报, 2016, 36(6): 53–56. DOI: 10.15892/j.cnki.djzdxb.2016.06.014.
ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental research on similarity law of explosive shock wave parameters with different orders of magnitude TNT [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(6): 53–56. DOI: 10.15892/j.cnki.djzdxb.2016.06.014.
|
[4] |
SADOVSKII M A. Mechanical action of air shock waves of explosion, based on experimental data [M]. Moscow, USA: Nauka Press, 1952.
|
[5] |
BRODE H L. Numerical solutions of spherical blast waves [J]. Journal of Applied Physics, 1955, 26(6): 766–775. DOI: 10.1063/1.1722085.
|
[6] |
BRODE H L. Blast wave from a spherical charge [J]. The Physics of Fluids, 1959, 2(2): 217–229. DOI: 10.1063/1.1705911.
|
[7] |
HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier, 1979.
|
[8] |
TOLBA A F F. Response of FRP-retrofitted reinforced concrete panels to blast loading [D]. Ottawa: Carleton University. 2002.
|
[9] |
周丰峻, 郑磊, 孙云厚, 等. 真实空气中TNT装药爆炸近区冲击波传播特性研究 [J]. 中国工程科学, 2017, 19(6): 18–26. DOI: 10.15302/J-SSCAE-2017.06.004.
ZHOU F J, ZHENG L, SUN Y H, et al. Research on propagation characteristic in close-in field of shock wave of TNT charge explosion [J]. Strategic Study of CAE, 2017, 19(6): 18–26. DOI: 10.15302/J-SSCAE-2017.06.004.
|
[10] |
刘科种. 爆炸能量输出结构与高威力炸药研究 [D]. 北京: 北京理工大学, 2009.
LIU K Z. Study on explosive energy output structure and high explosive charge [D]. Beijing: Beijing Institute of Technology, 2009.
|
[11] |
康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究 [J]. 爆炸与冲击, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.
KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.
|
[12] |
WU C Q, HAO H. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. DOI: 10.1016/j.ijimpeng.2004.03.002.
|
[13] |
仲倩, 王伯良, 黄菊, 等. TNT空中爆炸超压的相似律 [J]. 火炸药学报, 2010, 33(4): 32–35. DOI: 10.3969/j.issn.1007-7812.2010.04.008.
ZHONG Q, WANG B L, HUANG J, et al. Study on the similarity law of TNT explosion overpressure in air [J]. Chinese Journal of Explosives and Propellants, 2010, 33(4): 32–35. DOI: 10.3969/j.issn.1007-7812.2010.04.008.
|
[14] |
张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube [J]. Equipment Environmental Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
|
[15] |
白旭. 激波管波形控制技术研究 [J]. 仪表技术, 2023(1): 69–74. DOI: 10.19432/j.cnki.issn1006-2394.2023.01.012.
BAI X. Research on shock tube waveform control technology [J]. Instrumentation Technology, 2023(1): 69–74. DOI: 10.19432/j.cnki.issn1006-2394.2023.01.012.
|
[16] |
杨军, 薛斌. 激波管管长对阶跃压力波形的影响分析 [J]. 振动与冲击, 2019, 38(3): 252–257. DOI: 10.13465/j.cnki.jvs.2019.03.035.
YANG J, XUE B. Effects of shock tube length on step pressure waveform [J]. Journal of Vibration and Shock, 2019, 38(3): 252–257. DOI: 10.13465/j.cnki.jvs.2019.03.035.
|
[17] |
杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰 [J]. 力学进展, 2016, 46(1): 201613. DOI: 10.6052/1000-0992-16-009.
YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions [J]. Advances in Mechanics, 2016, 46(1): 201613. DOI: 10.6052/1000-0992-16-009.
|
[18] |
任辉启, 王世合, 周松柏, 等. 大型爆炸波模拟装置研制及其应用 [C]//第十六届全国激波与激波管学术会议论文集. 洛阳: 中国力学学会激波与激波管专业委员会, 2014: 10–22.
|
[19] |
谷笳华, 李仲发, 方治家. 用氢氧爆轰驱动气体直接模拟爆炸波 [C]//第十届全国激波与激波管学术讨论会. 黄山: 中国力学学会直属激波与激波管专业组, 2002.
|
[20] |
俞鸿儒, 赵伟, 袁生学. 氢氧爆轰驱动激波风洞的性能 [J]. 气动实验与测量控制, 1993, 7(3): 38–42.
YU H R, ZHAO W, YUAN S X. Performance of shock tunnel with H2-O2 detonation driver [J]. Amrodynamic Experiment and Measurement & Control, 1993, 7(3): 38–42.
|
[21] |
俞鸿儒. 氢氧燃烧及爆轰驱动激波管 [J]. 力学学报, 1999, 31(4): 389–397. DOI: 10.3321/j.issn:0459-1879.1999.04.002.
YU H R. Oxy-hydrogen combustion and detonation driven shock tube [J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 389–397. DOI: 10.3321/j.issn:0459-1879.1999.04.002.
|
[22] |
俞鸿儒, 李斌, 陈宏. 激波管氢氧爆轰驱动技术的发展进程 [J]. 力学进展, 2005, 35(3): 315–322. DOI: 10.3321/j.issn:1000-0992.2005.03.002.
YU H R, LI B, CHEN H. The development of gaseous detonation driving techniques for a shock tube [J]. Advances in Mechanics, 2005, 35(3): 315–322. DOI: 10.3321/j.issn:1000-0992.2005.03.002.
|
[23] |
崔云霄, 王万鹏, 王雷元, 等. 压缩气体驱动大型激波管内部流场的数值模拟 [C]//中国计算力学大会2014暨第三届钱令希计算力学奖颁奖大会论文集. 贵阳: 中国力学学会计算力学专业委员会, 2014.
|
[24] |
韩文虎, 张博, 王成. 气相爆轰波起爆与传播机理研究进展 [J]. 爆炸与冲击, 2021, 41(12): 121402. DOI: 10.11883/bzycj-2021-0398.
HAN W H, ZHANG B, WANG C. Progress in studying mechanisms of initiation and propagation for gaseous detonations [J]. Explosion and Shock Waves, 2021, 41(12): 121402. DOI: 10.11883/bzycj-2021-0398.
|
[25] |
DAVIDENKO D, GÖKALP I, DUFOUR E, et al. Numerical simulation of hydrogen supersonic combustion and validation of computational approach [C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies. Norfolk: 2013. DOI: 10.2514/6.2003-7033.
|
[26] |
YAMANAKA A, ARIGA Y, OBBARA T, et al. Study on performance of detonation-driven shock tube [J]. JSME International Journal Series B Fluids and Thermal Engineering, 2002, 45(2): 425–431. DOI: 10.1299/jsmeb.45.425.
|
[27] |
佐建君. 典型环境中特定炸药爆炸冲击波超压及安全防护 [D]. 北京: 北京理工大学, 2006.
|