Citation: | MA Sizhou, JIANG Haiming, LIU Kewei, WANG Mingyang. Effect of in-situ stress on fracture formation process of rock mass in presplit blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0365 |
[1] |
LIU K W, LI X D, HAO H, et al. Study on the raising technique using one blast based on the combination of long-hole presplitting and vertical crater retreat multiple-deck shots [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 41–58. DOI: 10.1016/j.ijrmms.2018.11.012.
|
[2] |
叶海旺, 唐可, 万涛, 等. 时序控制预裂爆破参数优化及应用 [J]. 爆炸与冲击, 2017, 37(3): 502–509. DOI: 10.11883/1001-1455(2017)03-0502-08.
YE H W, TANG K, WAN T, et al. Optimization of time sequence controlled pre-splitting blasting parameters and its application [J]. Explosion and Shock Waves, 2017, 37(3): 502–509. DOI: 10.11883/1001-1455(2017)03-0502-08.
|
[3] |
LI X D, LIU K W, QIU T, et al. Study of presplit blasting under high in-situ stress [J]. Engineering Fracture Mechanics, 2023, 288: 109360. DOI: 10.1016/j.engfracmech.2023.109360.
|
[4] |
YANG L Y, YANG A Y, CHEN S Y, et al. Model experimental study on the effects of in situ stresses on pre-splitting blasting damage and strain development [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104587. DOI: 10.1016/j.ijrmms.2020.104587.
|
[5] |
LANGEFORS U, KIHLSTRÖM B. The modern technique of rock blasting [M]. 2nd ed. Stockholm: John Wiley and Sons Incorporation, 1963.
|
[6] |
许传华, 张西良, 仪海豹, 等. 预裂爆破技术 [M]. 北京: 冶金工业出版社, 2024: 7–11.
XU C H, ZHANG X L, YI H B, et al. Pre-splitting blasting technology [M]. Beijing: Metallurgical Industry Press, 2024: 7–11.
|
[7] |
NICHOLLS H R, DUVALL W I. Presplitting rock in the presence of a static stress field [R]. Washington: U. S. Department of the Interior, Bureau of Mines, 1966.
|
[8] |
YANG L Y, CHEN S Y, YANG A Y, et al. Numerical and experimental study of the presplit blasting failure characteristics under compressive stress [J]. Soil Dynamics and Earthquake Engineering, 2021, 149: 106873. DOI: 10.1016/j.soildyn.2021.106873.
|
[9] |
LU W B, Chen M, GENG X, et al. A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations [J]. Tunnelling and Underground Space Technology, 2012, 29: 31–39. DOI: 10.1016/j.tust.2011.12.008.
|
[10] |
HU Y G, LU W B, WU X X, et al. Numerical and experimental investigation of blasting damage control of a high rock slope in a deep valley [J]. Engineering Geology, 2018, 237: 12–20. DOI: 10.1016/j.enggeo.2018.01.003.
|
[11] |
杨帅, 刘泽功, 常帅, 等. 地应力作用下聚能爆破煤体损伤特征试验研究 [J]. 采矿与安全工程学报, 2024, 41(5): 1078–1090. DOI: 10.13545/j.cnki.jmse.2023.0499.
YANG S, LIU Z G, CHANG S, et al. Experimental study on damage characteristics of coal body in concentrated shaped charge blasting under in-situ stress [J]. Journal of Mining & Safety Engineering, 2024, 41(5): 1078–1090. DOI: 10.13545/j.cnki.jmse.2023.0499.
|
[12] |
YANG R S, DING C X, LI Y L, et al. Crack propagation behavior in slit charge blasting under high static stress conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 117–123. DOI: 10.1016/j.ijrmms.2019.05.002.
|
[13] |
马泗洲, 刘科伟, 杨家彩, 等. 不耦合装药下岩石爆破块体尺寸的分布特征 [J]. 爆炸与冲击, 2024, 44(4): 045201. DOI: 10.11883/bzycj-2023-0358.
MA S Z, LIU K W, YANG J C, et al. Size distribution characteristics of blast-induced rock fragmentation under decoupled charge structures [J]. Explosion and Shock Waves, 2024, 44(4): 045201. DOI: 10.11883/bzycj-2023-0358.
|
[14] |
白羽. 地应力影响下岩石爆破损伤模型及其数值试验 [D]. 沈阳: 东北大学, 2014.
BAI Y. Blasting damage model and numerical test of rock under effect of in situ stress [D]. Shenyang: Northeastern University, 2014.
|
[15] |
杨建华, 孙文彬, 姚池, 等. 高地应力岩体多孔爆破破岩机制 [J]. 爆炸与冲击, 2020, 40(7): 075202. DOI: 10.11883/bzycj-2019-0427.
YANG J H, SUN W B, YAO C, et al. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses [J]. Explosion and Shock Waves, 2020, 40(7): 075202. DOI: 10.11883/bzycj-2019-0427.
|
[16] |
LI X D, LIU K W, SHA Y Y, et al. Experimental and numerical investigation on rock fracturing in tunnel contour blasting under initial stress [J]. International Journal of Impact Engineering, 2024, 185: 104844. DOI: 10.1016/j.ijimpeng.2023.104844.
|
[17] |
LU A, YAN P, LU W B, et al. Crack propagation mechanism of smooth blasting holes for tunnel excavation under high in-situ stress [J]. Engineering Fracture Mechanics, 2024, 304: 110144. DOI: 10.1016/j.engfracmech.2024.110144.
|
[18] |
KIRSCH G. Die theorie der elasitzität und die bedurfnisse der festigkeitslehre [J]. Zantralblatt Verlin Deutscher Ingenieure, 1898, 42: 797–807.
|
[19] |
谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索 [J]. 岩石力学与工程学报, 2015, 34(11): 2161–2178. DOI: 10.13722/j.cnki.jrme.2015.1369.
XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161–2178. DOI: 10.13722/j.cnki.jrme.2015.1369.
|
[20] |
YANG J H, JIANG Q H, ZHANG Q B, et al. Dynamic stress adjustment and rock damage during blasting excavation in a deep-buried circular tunnel [J]. Tunnelling and Underground Space Technology, 2018, 71: 591–604. DOI: 10.1016/j.tust.2017.10.010.
|
[21] |
严鹏, 卢文波, 陈明, 等. 隧洞开挖过程初始地应力动态卸载效应研究 [J]. 岩土工程学报, 2009, 31(12): 1888–1894. DOI: 10.3321/j.issn:1000-4548.2009.12.013.
YAN P, LU W B, CHEN M, et al. Effect of initial geo-stress dynamic unloading during tunnel excavation [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1888–1894. DOI: 10.3321/j.issn:1000-4548.2009.12.013.
|
[22] |
LI X D, LIU K W, QIU T, et al. Numerical study on fracture control blasting using air-water coupling [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 29. DOI: 10.1007/s40948-023-00546-y.
|
[23] |
MIKLOWITZ J. Plane-stress unloading waves emanating from a suddenly punched hole in a stretched elastic plate [J]. Journal of Applied Mechanics, 1960, 27(1): 165–171. DOI: 10.1115/1.3643892.
|
[24] |
LI X H, ZHU Z M, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses [J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. DOI: 10.1016/j.tust.2021.103968.
|
[25] |
李夕兵. 凿岩爆破工程 [M]. 长沙: 中南大学出版社, 2011.
|
[26] |
BANADAKI M M D. Stress-wave induced fracture in rock due to explosive action [D]. Toronto: University of Toronto, 2010.
|
[27] |
马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理 [J]. 爆炸与冲击, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
MA S Z, LIU K W, YANG J C, et al. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress [J]. Explosion and Shock Waves, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
|
[28] |
BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16–25. DOI: 10.1016/j.ijimpeng.2011.08.010.
|
[29] |
LSTC. LS-DYNA keyword user’s manual [Z]. California: Livermore Software Technology Corporation, 2003.
|
[30] |
MA S Z, LIU K W, GUO T F, et al. Experimental and numerical investigation on the mechanical characteristics and failure mechanism of cracked coal & rock-like combined sample under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103583. DOI: 10.1016/j.tafmec.2022.103583.
|
[31] |
HOUGH P V C. Method and means for recognizing complex patterns: US3069654A [P]. 1962-12-18.
|