Volume 43 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
ZOU Guangping, LIANG Zheng, WU Songyang, CHANG Zhongliang. Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading[J]. Explosion And Shock Waves, 2023, 43(7): 073104. doi: 10.11883/bzycj-2022-0254
Citation: ZOU Guangping, LIANG Zheng, WU Songyang, CHANG Zhongliang. Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading[J]. Explosion And Shock Waves, 2023, 43(7): 073104. doi: 10.11883/bzycj-2022-0254

Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading

doi: 10.11883/bzycj-2022-0254
  • Received Date: 2022-06-08
  • Rev Recd Date: 2022-09-16
  • Available Online: 2022-09-20
  • Publish Date: 2023-07-05
  • As a traditional energy absorbing and shock absorbing protective material, polyurethane has high requirements for its dynamic mechanical properties. An effective way to improve the impact resistance of polyurethane is to add ceramic balls as reinforcement in polyurethane matrix. The existing research on ceramic ball reinforced materials mainly focuses on nano and micro scale. The dynamic response of Al2O3 ceramic ball reinforced polyurethane matrix composites under small equivalent explosion load was simulated by establishing a numerical model of polyurethane embedded millimeter ceramic ball and using ALE algorithm of LS-DYNA and the correctness of the numerical model was verified by the empirical formula of henrych’s free field explosion overpressure and the penetration experiment of polyurethane-ceramic sphere composite plate. The deformation process of the composite plate was obtained and through the comparison of the acceleration of the composite plate and the pure polyurethane, it was found that the acceleration of the ceramic ball and the polyurethane always maintain the opposite direction, which proves that the existence of the ceramic ball reduces the overall acceleration fluctuation range; Furthermore, the effects of explosion equivalent on the velocity, displacement and energy absorption of composite plates and the effects of different explosion equivalent and ceramic ball size on the properties of composite materials under a certain areal density were discussed. The results show that the overall acceleration fluctuation range of polyurethane-ceramic balls composite material is about 1×105 m/s2 lower than that of pure polyurethane. With the increase of explosive equivalent, the deflection of the composite increased steadily to 1 mm, and the energy absorption proportion of polyurethane increased from 69.6% to 80.3%. Under the same areal density, both the deformation resistance of the composite plate and the overall acceleration fluctuation range increases with the increase of the diameter of the ceramic ball.
  • loading
  • [1]
    TOUNICI A, JM MARTIN. Influence of the surface chemistry of graphene oxide on the structure-property relationship of waterborne poly(urethane urea) adhesive [J]. Materials, 2021, 14(16): 350–379. DOI: 10.3390/ma14164377.
    [2]
    DUANG Z, HE H, LIANG W, et al. Tensile, quasistatic and dynamic fracture properties of nano-Al2O3 -modified epoxy resin [J]. Materials, 2018, 11(6): 905–917. DOI: 10.3390/ma11060905.
    [3]
    方奕欣, 陈蔚, 蒋震宇, 等. 碳纤维和SiO2纳米颗粒增强环氧树脂复合材料的压缩性能 [J]. 复合材料学报, 2019, 36(6): 1343–1352. DOI: 10.13801/j.cnki.fhclxb.20180907.001.

    FANG Y X, CHENG W, JIANG Z Y, et al. Compressive properties of epoxy resin composites reinforced with carbon fiber and SiO2 nanoparticles [J]. Journal of Composite Materials, 2019, 36(6): 1343–1352. DOI: 10.13801/j.cnki.fhclxb.20180907.001.
    [4]
    EVORA V, SHUKLA A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites [J]. Materials Science & Engineering: A, 2003, 361(1): 358–366. DOI: 10.1016/S0921-5093(03)00536-7.
    [5]
    钟发春, 刘忠平, 朱珈庆, 等. 纳米微球增强聚氨酯泡沫的制备及抗冲击应用 [J]. 包装工程, 2020, 41(1): 167–172. DOI: 10.19554/j.cnki.1001-3563.2020.01.026.

    ZHONG F C, LIU Z P, ZHU J Q, et al. Preparation and impact resistance of polyurethane foam reinforced by nano microspheres [J]. Packaging Engineering, 2020, 41(1): 167–172. DOI: 10.19554/j.cnki.1001-3563.2020.01.026.
    [6]
    胡勤, 王进华, 吕娟, 等. 6061铝合金约束Al2O3陶瓷球复合材料抗弹性能和抗弹机理研究 [J]. 振动与冲击, 2018, 37(18): 165–169, 183. DOI: 10.13465/j.cnki.jvs.2018.18.024.

    HU Q, WANG J H, LYU J et al. Study on ballistic properties and mechanism of 6061 aluminum alloy confined Al2O3 ceramic ball composites [J]. Vibration and Shock, 2018, 37(18): 165–169, 183. DOI: 10.13465/j.cnki.jvs.2018.18.024.
    [7]
    郑伟峰, 周来水, 袁铁军, 等. 颗粒Al2O3增强环氧树脂复合材料的微波固化动力学及性能 [J]. 高分子材料科学与工程, 2017, 33(10): 65–71. DOI: 10.16865/j.cnki.1000-7555.2017.10.012.

    ZHENG W F, ZHOU L S, YUAN T J, et al. Microwave curing kinetics and properties of particle Al2O3 reinforced epoxy resin composites [J]. Polymer materials science and Engineering, 2017, 33(10): 65–71. DOI: 10.16865/j.cnki.1000-7555.2017.10.012.
    [8]
    邹广平, 吴松阳, 徐舒博, 等. 石墨烯/陶瓷颗粒增强聚氨酯基复合材料动态压缩性能 [J]. 兵工学报, 2023, 44(3): 728–735. DOI: 10.12382/bgxb.2021.0777.

    ZHOU G P , WU S Y , XU S B, et al. Dynamic compression properties of graphene/ceramic particle reinforced polyurethane matrix composites [J]. Acta Armamentarii, 2023, 44(3): 728–735. DOI: 10.12382/bgxb.2021.0777.
    [9]
    ZHOU R, LU D H, JIANG Y H, et al. Mechanical properties and erosion wear resistance of polyurethane matrix composites [J]. Wear, 2005, 259(1): 676–683. DOI: 10.1016/j.wear.2005.02.118.
    [10]
    OUYANG X. Effects of modified Al2O3-decorated ionic liquid on the mechanical properties and impact resistance of a polyurethane elastomer [J]. Materials, 2021(16): 75–83. DOI: 10.3390/ma14164712.
    [11]
    ZHU F, ZHAO L. A numerical simulation of the blast impact of square metallic sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(5): 687–699. DOI: 10.1016/j.ijimpeng.2008.12.004.
    [12]
    LARCHER M . Simulation of the effects of an air blast wave[R]. Ispra, Italy: Joint Research Centre, 2007.
    [13]
    PAWAR J M , PATNAIK A , BISWAS S K, et al. Comparison of ballistic performance of Al2O3 and AlN ceramics [J]. International Journal of Impact Engineering, 2016, 98: 42–51. DOI: 10.1016/j.ijimpeng.2016.08.002.
    [14]
    FOX J W, GOURLBOURNE N C. On the dynamic electromechanical loading of dielectric elastomer membranes [J]. Journal of the Mechanics & Physics of Solids, 2008, 56(8): 2669–2686. DOI: 10.1016/j.jmps.2008.03.007.
    [15]
    RIVLIN R S. Large elastic deformations of isotropic materials: Ⅳ: further developments of the general theory [J]. Philosophical Transactions of the Royal Society of London: Mathematical and Physical Sciences, 1948, 241(835): 379–397. DOI: 10.2307/91391.
    [16]
    ZOU G P, YANG Y, WU S Y, et al. Study on the penetration resistance of a honeycomb composite structure coated with polyurethane elastomer [J]. Thin-Walled Structures, 2023, 187(6): 110747. DOI: 10.1016/j.tws.2023.110747.
    [17]
    HENRYCH J, MAIOR R. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979: 286–293.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (481) PDF downloads(224) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return