Volume 43 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
YANG Tianhao, CHONG Tao, LI Tao, FU Hua, HU Haibo. GPa-level slow-front ramp wave loading technology driven by non-shock initiation reaction[J]. Explosion And Shock Waves, 2023, 43(6): 064101. doi: 10.11883/bzycj-2022-0238
Citation: YANG Tianhao, CHONG Tao, LI Tao, FU Hua, HU Haibo. GPa-level slow-front ramp wave loading technology driven by non-shock initiation reaction[J]. Explosion And Shock Waves, 2023, 43(6): 064101. doi: 10.11883/bzycj-2022-0238

GPa-level slow-front ramp wave loading technology driven by non-shock initiation reaction

doi: 10.11883/bzycj-2022-0238
  • Received Date: 2022-05-31
  • Rev Recd Date: 2022-06-06
  • Available Online: 2022-06-07
  • Publish Date: 2023-06-05
  • To study the ignition behavior of micro-mesoscopic hot spots in the matrix of pressed PBXs under GPa and 10 μs-level slow-front ramp wave loading, a ramp wave loading device driven by non-shock initiation reaction of pressed PBX with heavy constraint was designed. With the help of the output pressure from the explosion reaction of the donor explosive, the acceptor explosive was loaded by a ramp wave. A two-dimensional axisymmetric finite difference program was developed based on the burn rate equation of laminar combustion on the explosive surface to guide the structural design of the device. The pressure history during the combustion process of the explosive crack surface formed by the explosive fragmentation in the late stage of the non-shock initiation reaction of the donor explosive in the device configuration and the pressure waveform acting on the acceptor explosive are analyzed. And the influence of crushing degree of donor explosive and device structure parameters (thickness of case and interlayer) on output pressure waveform during the combustion process is discussed. The calculation results show that the specific combustion surface area formed by the crushing of the donor explosive is the key factor affecting the pressure evolution of the non-shock initiation reaction. The larger the specific combustion surface area, the greater the ramp wave pressure is. The ramp wave pressure can reach above GPa, and the corresponding rising front of the pressure wave can be reduced from tens of milliseconds to several milliseconds. The thickness of the case of the donor explosive, namely the constraint strength, has a significant effect on the pressure during the non-shock initiation reaction. As the thickness of the interlayer increases, the output ramp wave pressure decays approximately exponentially. The structural design of the device was completed according to the calculation results, and the ramp wave loading experiment was carried out on the tested PBX. The pressure at the incident interface of the tested explosive measured by PVDF is 1.6 GPa, and the front of the ramp wave is 25 μs, which preliminarily proved the feasibility of realizing GPa and 10 μs-level ramp wave pressure output by using the non-shock initiation reaction of heavily constrained pressed PBX explosives.
  • loading
  • [1]
    ASAY B W. Shock wave science and technology reference library, Vol. 5: non-shock initiation of explosives [M]. Berlin, Heidelberg: Springer, 2010: 1–14. DOI: 10.1007/978-3-540-87953-4.
    [2]
    郭应文, 胡海波, 李涛, 等. 压装PBX炸药DDT管实验初始反应演化过程分析 [J]. 火炸药学报, 2017, 40(3): 77–79, 89. DOI: 10.14077/j.issn.1007-7812.2017.03.014.

    GUO Y W, HU H B, LI T, et al. Analysis of initial reaction evolution process of experiment of DDT tube filled with pressed PBX explosives [J]. Chinese Journal of Explosives & Propellants, 2017, 40(3): 77–79, 89. DOI: 10.14077/j.issn.1007-7812.2017.03.014.
    [3]
    HU H B, GUO Y W, LI T, et al. Reactive behavior of explosive billets in deflagration tube of varied confinements [J]. AIP Conference Proceedings, 2018, 1979(1): 150020.
    [4]
    胡海波, 傅华, 李涛, 等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展 [J]. 爆炸与冲击, 2020, 40(1): 011401. DOI: 10.11883/bzycj-2019-0346.

    HU H B, FU H, LI T, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011401. DOI: 10.11883/bzycj-2019-0346.
    [5]
    邱天, 文尚刚, 李涛, 等. 长管强约束条件下压装PBX炸药点火实验研究 [J]. 爆炸与冲击, 2020, 40(1): 011405. DOI: 10.11883/bzycj-2019-0360.

    QIU T, WEN S G, LI T, et al. Experimental study on initiated reaction evolution of pressed explosives in long thick wall cylinder confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011405. DOI: 10.11883/bzycj-2019-0360.
    [6]
    李涛, 胡海波, 尚海林, 等. 强约束球形装药反应裂纹传播和反应烈度表征实验 [J]. 爆炸与冲击, 2020, 40(1): 011402. DOI: 10.11883/bzycj-2019-0348.

    LI T, HU H B, SHANG H L, et al. Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011402. DOI: 10.11883/bzycj-2019-0348.
    [7]
    李涛, 程赋, 胡海波, 等. 一种单向柱壳约束反应烈度量化诊断装置和诊断方法: CN201910955979.0 [P]. 2019-10-10.

    LI T, CHENG F, HU H B, et al. One-way cylindrical shell constraint reaction intensity quantitative diagnosis device and diagnosis method: CN201910955979.0 [P]. 2019-10-10.
    [8]
    SALISBURY D A, TAYLOR P, WINTER R E, et al. Single and double shock initiation of EDC37 [J]. Dimensions, 2002, 2000(10): 150.
    [9]
    WINTER R E, SORBER S S, SALISBURY D A, et al. Experimental study of the shock response of an HMX-based explosive [J]. Shock Waves, 2006, 15(2): 89–101. DOI: 10.1007/s00193-006-0010-9.
    [10]
    GARCIA F, FORBES J W, TARVER C M, et al. Pressure wave measurements from thermal cook-off of an HMX based high explosive PBX 9501 [J]. AIP Conference Proceedings, 2002, 620(1): 882–885.
    [11]
    杨天昊. 炸药非冲击点火爆炸事故反应主控因素及GPa级斜波作用下PBX基体中微介观热点响应行为研究 [D]. 绵阳: 中国工程物理研究院, 2022.

    YANG T H. Study on main controlling factors of explosive non-shock initiation explosion accident reaction and the response behavior of micro-mesoscopic hot spots in PBX under the GPa-level ramp wave [D]. Mianyang, China: China Academy of Engineering Physics, 2022.
    [12]
    尚海林, 杨洁, 胡秋实, 等. 炸药裂缝中的对流燃烧现象实验研究 [J]. 兵工学报, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.

    SHANG H L, YANG J, HU Q S, et al. Experimental research on convective burning in explosive cracks [J]. Acta Armamentarii, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.
    [13]
    尚海林, 胡秋实, 李涛, 等. 炸药裂缝燃烧增压过程的一维理论 [J]. 爆炸与冲击, 2020, 40(1): 011403. DOI: 10.11883/bzycj-2019-0345.

    SHANG H L, HU Q S, LI T, et al. One-dimensional theory for pressurization process in explosive crack burning [J]. Explosion and Shock Waves, 2020, 40(1): 011403. DOI: 10.11883/bzycj-2019-0345.
    [14]
    姚奎光, 赵学峰, 樊星, 等. 高压下PBX-1炸药的燃速-压力特性 [J]. 爆炸与冲击, 2020, 40(1): 011404. DOI: 10.11883/bzycj-2019-0347.

    YAO K G, ZHAO X F, FAN X, et al. Burn rate-pressure characteristic for PBX-1 explosive at high pressures [J]. Explosion and Shock Waves, 2020, 40(1): 011404. DOI: 10.11883/bzycj-2019-0347.
    [15]
    王延飞, 刘杰, 张旭, 等. 未反应炸药JOB-9003的JWL状态方程 [J]. 高压物理学报, 2016, 30(5): 387–391. DOI: 10.11858/gywlxb.2016.05.007.

    WANG Y F, LIU J, ZHANG X, et al. JWL equation of state of unreacted JOB-9003 explosive [J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 387–391. DOI: 10.11858/gywlxb.2016.05.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (437) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return