Volume 43 Issue 5
May  2023
Turn off MathJax
Article Contents
DING Yang, LU Qiang, LI Jin, GUO Zhiyun, WANG Zhanjiang. Realization of ultra-low specific impulse loading by synchronous initiation of discrete group of cross ultra-fine explosive rods[J]. Explosion And Shock Waves, 2023, 43(5): 054101. doi: 10.11883/bzycj-2022-0314
Citation: DING Yang, LU Qiang, LI Jin, GUO Zhiyun, WANG Zhanjiang. Realization of ultra-low specific impulse loading by synchronous initiation of discrete group of cross ultra-fine explosive rods[J]. Explosion And Shock Waves, 2023, 43(5): 054101. doi: 10.11883/bzycj-2022-0314

Realization of ultra-low specific impulse loading by synchronous initiation of discrete group of cross ultra-fine explosive rods

doi: 10.11883/bzycj-2022-0314
  • Received Date: 2022-07-19
  • Rev Recd Date: 2023-01-19
  • Available Online: 2023-02-21
  • Publish Date: 2023-05-05
  • The loading technology of cosine distributed load by chemical explosion is the main method for evaluating the dynamic response of space structures under the irradiation of high-altitude nuclear explosions with soft X-rays. A loading method of discretely-distributed sheet explosives synchronously detonated by a mild detonating fuse (MDF) network was proposed to meet the design requirements of complex configuration, high synchronicity and low specific impulse load in the structural assessment of new space vehicles. In terms of experimental study, the cross-shaped sheet explosive made by stacking explosive strips with a cross-sectional size of 0.33 mm×0.5 mm can be directly detonated by a mild detonating fuse with the diameter of 0.5 mm. Compared with strip distribution, the space uniformity of cross distribution is improved by 76.7%. A high-speed camera was used to record the shock wave luminescence during the detonation process. The results show that the detonation ratio of the 21-point MDF detonation network reaches 100%, and the detonation asynchrony is less than 1 μs. In terms of numerical simulation, a numerical model for the explosion of sheet explosives was established based on the multi-material arbitrary Lagrangian-Eulerian (ALE) algorithm. The numerical model has strong grid sensitivity, and the results by it tend to converge when the mesh size reaches 0.5 mm, with the deviation from the measured specific impulse results within 5%. Based on the numerically-simulated results, the following conclusions can be drawn. (1) Under the periodic discrete distribution condition, the peak specific impulse is determined by the surface density of the explosive, and the evolution process of the peak specific impulse is determined by the spacing. (2) The homogenization process of specific impulse can be divided into three stages: diffusion stage, superposition stage and uniform stage. The specific impulse is homogenized through free diffusion of shock wave in the diffusion stage, and through shock wave superposition and collision in the superposition stage, and finally enters the uniform stage with relatively uniform distribution. (3) The homogenization distance into the uniform stage required by the arrays of square and short rod explosives is about equal to the spacing of the explosives, while the arrays of cross explosives only need about 0.8 times the spacing, and the degree of homogenization in the uniform stage is higher, so the cross explosive has a greater advantage in the case of plane explosive loading. (4) The loading mode of synchronous initiation of discrete explosive group not only improves the load synchronization, but also improves the load uniformity, compared with the slip detonation loading of rod distributed charge. The structural response distortion caused by the excessive additional mass of rubber can also be avoided by using the air layer between the sheet explosives and the structure to homogenize the load.
  • loading
  • [1]
    周南, 乔登江. 脉冲束辐照材料动力学 [M]. 北京: 国防工业出版社, 2002.
    [2]
    毛勇建, 邓宏见, 何荣建. 强脉冲软X光喷射冲量的几种模拟加载技术 [J]. 强度与环境, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008.

    MAO Y J, DENG H J, HE R J. Several simulation techniques of blow-off impulses by intense pulsed cold X-rays [J]. Structure and Environment Engineering, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008.
    [3]
    LINDBERG H E, MURRAY Y. Calibration and analysis of the SPLAT (spray lead at target) impulse simulation technique: DNA-TR-81-333 [R]. San Jose, CA: Aptek Inc. , 1983.
    [4]
    LINDBERG H E. Deformation ripple from the SPLAT (spray-lead-at-target) impulse simulation technique: AD-A190-861 [R]. San Jose, CA: Aptek Inc. , 1987.
    [5]
    赵国民, 张若棋, 彭常贤, 等. 铅壳柔爆索冲量作用下圆柱壳体结构响应实验研究 [J]. 爆炸与冲击, 2002, 22(2): 126–131.

    ZHAO G M, ZHANG R Q, PENG C X, et al. Experimental studies of the structural response of cylindrical shells under mild detonating fuse impulse [J]. Explosion and Shock Waves, 2002, 22(2): 126–131.
    [6]
    BENHAM R A, 褚桂敏. 用光引爆炸药模拟X射线喷溅脉冲对全尺寸再入弹头的作用 [J]. 导弹与航天运载技术, 1984(1): 96–103.
    [7]
    RIVERA W G. Cosine distributed impulsive loading of a thin aluminum ring by a light initiated high explosive driven flyer plate: SAND2007-1161C [R]. Albuquerque: Sandia National Laboratories, 2007.
    [8]
    RIVERA W G. Light initiated high explosive driven flyer plate design, implementation, and performance: SAND2004-5236C [R]. Albuquerque: Sandia National Laboratories, 2004.
    [9]
    RIVERA W G. Light initiated high explosive driven flyer plate impulse technique for combined material and structural response: SAND2006-6699C [R]. Albuquerque: Sandia National Laboratories, 2006.
    [10]
    COVERT T D, RIVERA W G. Light initiated high explosive driven flyer plate motion and impact dynamics: SAND2007-1424C [R]. Albuquerque: Sandia National Laboratories, 2007.
    [11]
    COVERT T T. Staubli TX-90XL robot qualification at the LLIHE: SAND2010-7222 [R]. Albuquerque: Sandia National Laboratories, 2010.
    [12]
    COVERT T T. VISAR validation test series at the light initiated high explosive (LIHE) facility: SAND2007-0779 [R]. Albuquerque: Sandia National Laboratories, 2007.
    [13]
    随亚光, 陈博, 徐海斌, 等. 光敏炸药加载实验中的电磁干扰防护技术 [J]. 现代应用物理, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203.

    SUI Y G, CHEN B, XU H B, et al. Electromagnetic interference protection technology in loading experiment of light-initiated explosive [J]. Modern Applied Physics, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203.
    [14]
    徐海斌, 裴明敬, 张德志, 等. 酸性乙炔银制备方法及其表征 [J]. 火工品, 2019(4): 40–43.

    XU H B, PEI M J, ZHANG D Z, et al. Synthesis and characterization of silver acetylide-silver nitrate [J]. Initiators and Pyrotechnics, 2019(4): 40–43.
    [15]
    徐海斌, 裴明敬, 张德志, 等. 乙炔银-硝酸银合成工艺优化及其性能测试 [J]. 火炸药学报, 2018, 41(6): 573–577. DOI: 10.14077/j.issn.1007-7812.2018.06.007.

    XU H B, PEI M J, ZHANG D Z, et al. Optimization of synthesis process and property test of silver acetylide-silver nitrate [J]. Chinese Journal of Explosives and Propellants, 2018, 41(6): 573–577. DOI: 10.14077/j.issn.1007-7812.2018.06.007.
    [16]
    裴明敬, 徐海斌, 王等旺, 等. 酸性乙炔银的光起爆特性 [J]. 高压物理学报, 2017, 31(6): 813–819. DOI: 10.11858/gywlxb.2017.06.017.

    PEI M J, XU H B, WANG D W, et al. Detonation characteristics of light-initiated explosive silver acetylide-silver nitrate [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 813–819. DOI: 10.11858/gywlxb.2017.06.017.
    [17]
    杨军, 裴明敬, 王等旺, 等. 基于光子多普勒测速仪的冲量传感器 [J]. 兵工学报, 2017, 38(S1): 150–154.

    YANG J, PEI M J, WANG D W, et al. Impulse sensor based on photonic doppler velocimetry [J]. Acta Armamentarii, 2017, 38(S1): 150–154.
    [18]
    RIVERA W G, BENHAM R A, DUGGINS B D, et al. Explosive technique for impulse loading of space structures: SAND 99-3175C [R]. Albuquerque: Sandia National Laboratories, 1999.
    [19]
    毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅰ): 流固耦合模拟 [J]. 高压物理学报, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006.

    MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅰ): fluid-structure interaction simulation [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006.
    [20]
    毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅱ): 解耦分析与试验验证 [J]. 高压物理学报, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011.

    MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅱ): decoupling analysis and experimental validation [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011.
    [21]
    毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅲ): 对X射线力学效应的模拟等效性分析 [J]. 高压物理学报, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009.

    MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of loading cylindrical shell by explosive rods (Ⅲ): fidelity for simulating X-ray mechanical effect [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009.
    [22]
    卢强, 王占江, 刘晓新, 等. 薄片炸药与固体靶冲量耦合的计算模型 [J]. 爆炸与冲击, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08.

    LU Q, WANG Z J, LIU X X, et al. A computational model for impulse coupling between sheet explosive and target [J]. Explosion and Shock Waves, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08.
    [23]
    文明, 洪延姬, 王军, 等. 冲击摆冲量测量的原理及精度分析 [J]. 装备指挥技术学院学报, 2005, 16(6): 110–113. DOI: 10.3783/j.issn.1673-0127.2005.06.026.

    WEN M, HONG Y J, WANG J, et al. The principle and accuracy analysis of impulse measurement with impact pendulum [J]. Journal of the Academy of Equipment Command and Technology, 2005, 16(6): 110–113. DOI: 10.3783/j.issn.1673-0127.2005.06.026.
    [24]
    DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Livermore: Lawrence Livermore National Laboratory, 1981.
    [25]
    张社荣, 李宏璧, 王高辉, 等. 空中和水下爆炸冲击波数值模拟的网格尺寸效应对比分析 [J]. 水利学报, 2015, 46(3): 298–306. DOI: 10.13243/j.cnki.slxb.2015.03.006.

    ZHANG S R, LI H B, WANG G H, et al. Comparative analysis of mesh size effects on numerical simulation of shock wave in air blast and underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(3): 298–306. DOI: 10.13243/j.cnki.slxb.2015.03.006.
    [26]
    SHI Y C, LI Z X, HAO H. Mesh size effect in numerical simulation of blast wave propagation and interaction with structures [J]. Transactions of Tianjin University, 2008, 14(6): 396–402. DOI: 10.1007/s12209-008-0068-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)

    Article Metrics

    Article views (237) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return