Volume 43 Issue 5
May  2023
Turn off MathJax
Article Contents
LI Xiangshang, ZHENG Junjie, SONG Yanqi, GUO Deyong, MA Hongfa, WANG Jiamin. On infiltration enhancement mechanism of shaped charge blasting in high gas and low permeability coal seam[J]. Explosion And Shock Waves, 2023, 43(5): 055201. doi: 10.11883/bzycj-2022-0164
Citation: LI Xiangshang, ZHENG Junjie, SONG Yanqi, GUO Deyong, MA Hongfa, WANG Jiamin. On infiltration enhancement mechanism of shaped charge blasting in high gas and low permeability coal seam[J]. Explosion And Shock Waves, 2023, 43(5): 055201. doi: 10.11883/bzycj-2022-0164

On infiltration enhancement mechanism of shaped charge blasting in high gas and low permeability coal seam

doi: 10.11883/bzycj-2022-0164
  • Received Date: 2022-04-18
  • Rev Recd Date: 2022-09-27
  • Available Online: 2022-10-19
  • Publish Date: 2023-05-05
  • In order to improve the permeability of coal seam with high gas and low permeability and effectively control the disaster of coal and gas outburst, the mechanism of permeability enhancement of coal seam by shaped charge blasting is studied. Firstly, the comparative experiments of concrete cracking caused by shaped charge blasting and conventional blasting were carried out, and the sizes of concrete crushing area and fracture area after blasting were compared. Meanwhile, the strain data of the strain bricks with time were collected by the super dynamic strain gauges. Then, ANSYS/LS-DYNA is used to reproduce the whole process of the formation, migration and penetration into concrete of shaped energy jet. The stress wave propagation characteristics of shaped charge blasting and conventional blasting are compared and analyzed. Finally, the coal seam antireflection tests were carried out in Pingmei No. 10 mine, and the gas volume fraction of the extraction hole after blasting was compared. The results show that after shaped charge blasting, the crack width of concrete in the direction of energy accumulation and in its perpendicular direction was 1.1 cm and 0.4 cm, respectively; while the width of four main cracks formed in concrete after conventional blasting was 0.3 cm. Comparing the strain peaks measured from strain gauges at the same distance, it is found that the strain gauge in the direction of energy accumulation is the maximum, followed by the perpendicular direction, and the strain at the diagonal direction is the minimum. In addition, the strain peak value in the direction of energy accumulation is much larger than that under conventional blasting, and the strain peak value in the perpendicular direction is basically equal to that of conventional blasting, while the strain peak value of the diagonal direction is smaller than that under the conventional blasting. The numerical simulation results show that the crushing region of concrete after shaped charge blasting is of “dumbbell type”, and the area of crushing region is smaller than that under conventional blasting. While the fracture region is of “spindle type”, the fracture is better developed. The field test shows that the gas volume fraction of the extraction hole after shaped charge blasting is significantly higher than that under conventional blasting. It is seen that shaped charge blasting can effectively improve the permeability of coal seam with high gas and low permeability.
  • loading
  • [1]
    刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向 [J]. 煤炭学报, 2021, 46(1): 1–15. DOI: 10.13225/j.cnki.jccs.2021.0042.

    LIU F, CAO W J, ZHANG J M, et al. Current technological innovation and development direction of the 14th five-year plan period in China coal industry [J]. Journal of China Coal Society, 2021, 46(1): 1–15. DOI: 10.13225/j.cnki.jccs.2021.0042.
    [2]
    CAO Y X, ZHANG J S, ZHAI H, et al. CO2 gas fracturing: A novel reservoir stimulation technology in low permeability gassy coal seams [J]. Fuel, 2017, 203: 197–207. DOI: 10.1016/j.fuel.2017.04.053.
    [3]
    梁运涛, 曾文. 激波诱导瓦斯爆炸的动力学特性及影响因素 [J]. 爆炸与冲击, 2010, 30(4): 370–376. DOI: 10.11883/1001-1455(2010)04-0370-07.

    LIANG Y T, ZENG W. Kinetic characteristics and influencing factors of gas explosion induced by shock wave [J]. Explosion and Shock Waves, 2010, 30(4): 370–376. DOI: 10.11883/1001-1455(2010)04-0370-07.
    [4]
    聂百胜, 马延崑, 何学秋, 等. 煤与瓦斯突出微观机理探索研究 [J]. 中国矿业大学学报, 2022, 51(2): 207–220. DOI: 10.13247/j.cnki.jcumt.001384.

    NIE B S, MA Y K, HE X Q, et al. Micro-scale mechanism of coal and gas outburst: a preliminary study [J]. Journal of China University of Mining and Technology, 2022, 51(2): 207–220. DOI: 10.13247/j.cnki.jcumt.001384.
    [5]
    郑凯歌. 碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究 [J]. 采矿与安全工程学报, 2020, 37(2): 272–281. DOI: 10.13545/j.cnki.jmse.2020.02.007.

    ZHENG K G. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability [J]. Journal of Mining & Safety Engineering, 2020, 37(2): 272–281. DOI: 10.13545/j.cnki.jmse.2020.02.007.
    [6]
    ZHOU L, ZHENG X L, LU Y Y, et al. Fracture pattern and Caprock integrity analyses via hydraulic fracturing for CO2 enhanced coal bed methane [J]. Engineering Fracture Mechanics, 2020, 228: 106894. DOI: 10.1016/j.engfracmech.2020.106894.
    [7]
    罗勇, 沈兆武. 多面聚能射孔压裂排放瓦斯的研究 [J]. 工程爆破, 2005, 11(1): 68–71. DOI: 10.3969/j.issn.1006-7051.2005.01.018.

    LUO Y, SHEN Z W. Study on methane drainage using technique of multi-perforating and fracturing [J]. Engineering Blasting, 2005, 11(1): 68–71. DOI: 10.3969/j.issn.1006-7051.2005.01.018.
    [8]
    罗勇, 沈兆武, 崔晓荣. 多面聚能线性切割器的研究 [J]. 爆破, 2006, 23(2): 93–96,101. DOI: 10.3963/j.issn.1001-487X.2006.02.028.

    LUO Y, SHEN Z W, CUI X R. Application of multiple linear cavity effect cutter [J]. Blasting, 2006, 23(2): 93–96,101. DOI: 10.3963/j.issn.1001-487X.2006.02.028.
    [9]
    罗勇, 沈兆武. 切缝药包岩石定向断裂爆破的研究 [J]. 振动与冲击, 2006, 25(4): 155–158. DOI: 10.3969/j.issn.1000-3835.2006.04.042.

    LUO Y, SHEN Z W. Study on the directional fracture controlled blasting with slit-charge in rock [J]. Journal of Vibration and Shock, 2006, 25(4): 155–158. DOI: 10.3969/j.issn.1000-3835.2006.04.042.
    [10]
    罗勇, 沈兆武. 聚能药包在岩石定向断裂爆破中的应用研究 [J]. 爆炸与冲击, 2006, 26(3): 250–255. DOI: 10.11883/1001-1455(2006)03-0250-06.

    LUO Y, SHEN Z W. Application study on directional fracture controlled blasting with shaped charge in rock [J]. Explosion and Shock Waves, 2006, 26(3): 250–255. DOI: 10.11883/1001-1455(2006)03-0250-06.
    [11]
    罗勇, 沈兆武, 崔晓荣. 线性聚能切割器的应用研究 [J]. 含能材料, 2006, 14(3): 236–240. DOI: 10.3969/j.issn.1006-9941.2006.03.021.

    LUO Y, SHEN Z W, CUI X R. Application study on blasting with linear cumulative cutting charge in rock [J]. Chinese Journal of Energetic Materials, 2006, 14(3): 236–240. DOI: 10.3969/j.issn.1006-9941.2006.03.021.
    [12]
    杨仁树, 左进京, 杨立云, 等. 爆炸应力波作用下动、静裂纹相互作用的实验研究 [J]. 爆炸与冲击, 2017, 37(6): 952–958. DOI: 10.11883/1001-1455(2017)06-0952-07.

    YANG R S, ZUO J J, YANG L Y, et al. Dynamic and static crack interaction under action of explosive stress wave [J]. Explosion and Shock Waves, 2017, 37(6): 952–958. DOI: 10.11883/1001-1455(2017)06-0952-07.
    [13]
    杨仁树, 王雁冰, 岳中文, 等. 定向断裂双孔爆破裂纹扩展的动态行为 [J]. 爆炸与冲击, 2013, 33(6): 631–637. DOI: 10.11883/1001-1455(2013)06-0631-07.

    YANG R S, WANG Y B, YUE Z W, et al. Dynamic behaviors of crack propagation in directional fracture blasting with two holes [J]. Explosion and Shock Waves, 2013, 33(6): 631–637. DOI: 10.11883/1001-1455(2013)06-0631-07.
    [14]
    MENG N K, CHEN Y, BAI J B, et al. Numerical simulation of directional fracturing by shaped charge blasting [J]. Energy Science & Engineering, 2020, 8(5): 1824–1839. DOI: 10.1002/ese3.635.
    [15]
    YIN Y, SUN Q, ZOU B P, et al. Numerical study on an innovative shaped charge approach of rock blasting and the timing sequence effect in microsecond magnitude [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4523–4542. DOI: 10.1007/s00603-021-02516-w.
    [16]
    HE C L, YANG J. Experimental and numerical investigations of dynamic failure process in rock under blast loading [J]. Tunnelling and Underground Space Technology, 2019, 83: 552–564. DOI: 10.1016/j.tust.2018.08.047.
    [17]
    刘健, 刘泽功, 高魁, 等. 深孔定向聚能爆破增透机制模拟试验研究及现场应用 [J]. 岩石力学与工程学报, 2014, 33(12): 2490–2496. DOI: 10.13722/j.cnki.jrme.2014.12.014.

    LIU J, LIU Z G, GAO K, et al. Experimental study and application of directional focused energy blasting in deep boreholes [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2490–2496. DOI: 10.13722/j.cnki.jrme.2014.12.014.
    [18]
    高魁, 刘泽功, 刘健, 等. 定向聚能爆破弱化综掘工作面逆断层应用研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1408–1419. DOI: 10.13722/j.cnki.jrme.2018.1447.

    GAO K, LIU Z G, LIU J, et al. Application research of directional cumulative blasting for weakening reverse faults in fully mechanized excavation face [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1408–1419. DOI: 10.13722/j.cnki.jrme.2018.1447.
    [19]
    康勇, 郑丹丹, 粟登峰, 等. 水射流切槽定向聚能爆破模型及数值模拟研究 [J]. 振动与冲击, 2015, 34(9): 182–188. DOI: 10.13465/j.cnki.jvs.2015.09.033.

    KANG Y, ZHENG D D, SU D F, et al. Model of directional shaped blasting assisted with water jet and its numerical simulation [J]. Journal of Vibration and Shock, 2015, 34(9): 182–188. DOI: 10.13465/j.cnki.jvs.2015.09.033.
    [20]
    郭德勇, 赵杰超, 张超, 等. 煤层深孔聚能爆破控制孔作用机制研究 [J]. 岩石力学与工程学报, 2018, 37(4): 919–930. DOI: 10.13722/j.cnki.jrme.2017.1038.

    GUO D Y, ZHAO J C, ZHAO C, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 919–930. DOI: 10.13722/j.cnki.jrme.2017.1038.
    [21]
    郭德勇, 吕鹏飞, 单智勇, 等. 瓦斯抽放煤层增透深孔聚能爆破钻孔参数 [J]. 北京科技大学学报, 2013, 35(1): 16–20. DOI: 10.13374/j.issn1001-053x.2013.01.006.

    GUO D Y, LV P F, SHAN Z Y, et al. Drilling parameters of deep-hole cumulative blasting to improve coal seam permeability in gas drainage [J]. Journal of University of Science and Technology Beijing, 2013, 35(1): 16–20. DOI: 10.13374/j.issn1001-053x.2013.01.006.
    [22]
    郭德勇, 张超, 李柯, 等. 松软低透煤层深孔微差聚能爆破致裂机理 [J]. 煤炭学报, 2021, 46(8): 2583–2592. DOI: 10.13225/j.cnki.jccs.2020.1843.

    GUO D Y, ZHANG C, LI K, et al. Mechanism of millisecond-delay detonation on coal cracking under deep-hole cumulative blasting in soft and low permeability coal seam [J]. Journal of China Coal Society, 2021, 46(8): 2583–2592. DOI: 10.13225/j.cnki.jccs.2020.1843.
    [23]
    宋彦琦, 李向上, 郭德勇. 多孔同段聚能爆破煤层增透数值模拟及应用 [J]. 煤炭学报, 2018, 43(S2): 469–474. DOI: 10.13225/j.cnki.jccs.2018.1095.

    SONG Y Q, LI X S, GUO D Y. Numerical simulation of multi-hole and same delay time of cumulative blasting in coal seam and its application [J]. Journal of China Coal Society, 2018, 43(S2): 469–474. DOI: 10.13225/j.cnki.jccs.2018.1095.
    [24]
    褚怀保, 杨小林, 余永强, 等. 煤体爆破模拟材料选择试验研究 [J]. 煤炭科学技术, 2010, 38(5): 31–33. DOI: 10.13199/j.cst.2010.05.38.chuhb.032.

    CHU H B, YANG X L, YU Y Q, et al. Test and research on similar material selection for coal blasting [J]. Coal Science and Technology, 2010, 38(5): 31–33. DOI: 10.13199/j.cst.2010.05.38.chuhb.032.
    [25]
    李裕春, 时党勇, 赵远. ANSYS 10.0/LS-DYNA基础理论与工程实践 [M]. 北京: 中国水利水电出版社, 2006: 88–95.
    [26]
    邓永兴, 张中雷, 管志强, 等. 螺旋管聚能药包根底光面爆破机理研究及应用 [J]. 爆炸与冲击, 2020, 40(1): 015201. DOI: 10.11883/bzycj-2018-0495.

    DENG Y X, ZHANG Z L, GUAN Z Q, et al. Research and application of root smooth blasting mechanism of shaped charge in spiral tube [J]. Explosion and Shock Waves, 2020, 40(1): 015201. DOI: 10.11883/bzycj-2018-0495.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (436) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return