Volume 43 Issue 5
May  2023
Turn off MathJax
Article Contents
PAN Yahao, ZONG Zhouhong, QIAN Haimin, HUANG Jie, SHAN Yulin. Experimental study on blast wave propagation in calcareous sand[J]. Explosion And Shock Waves, 2023, 43(5): 053201. doi: 10.11883/bzycj-2022-0117
Citation: PAN Yahao, ZONG Zhouhong, QIAN Haimin, HUANG Jie, SHAN Yulin. Experimental study on blast wave propagation in calcareous sand[J]. Explosion And Shock Waves, 2023, 43(5): 053201. doi: 10.11883/bzycj-2022-0117

Experimental study on blast wave propagation in calcareous sand

doi: 10.11883/bzycj-2022-0117
  • Received Date: 2022-03-25
  • Rev Recd Date: 2022-12-26
  • Available Online: 2023-02-07
  • Publish Date: 2023-05-05
  • Calcareous sand is widely distributed in coastal areas, and its engineering and mechanical properties are significantly different from terrestrial sands. To study the blast wave propagation in calcareous sand, a series of explosion tests with various charge weights on the ground surface were carried out in calcareous sand and silica sand. Pressure time-history curves at positions directly below the explosion center were measured. The propagation laws of two kinds of sands were investigated, including peak pressure, wave velocities of elastic and plastic waves, the rise time of pressure and size of cater. The results show that the blast wave propagation in calcareous sand differs from that in silica sand. Tests under 0.2 kg and 0.8 kg charge weight were conducted twice. And the results show that the explosion experiment is repeatable. Cater produced by the surface explosion in calcareous sand has a smaller size than in silica sand, and the shape of the cater is two-tier concentric circles, one of which is small in diameter and large in depth, and the other is large in diameter and small in depth. The elastic velocity in calcareous sand is 236 m/s to 300 m/s, and that in silica sand is 218 m/s to 337 m/s, while the elastic wave and plastic wave velocity increase with the increase of the explosive charge. The rise time of the blast wave pressure in calcareous sand increases with the increase of scaled distance. In silica sand, rise time does not change with the scaled distance and is much smaller than that in calcareous sand. The measured peak pressures are fitted by using a power function of scaled distance. The attenuation laws of peak pressure in calcareous sand and silica sand are derived. The attenuation coefficient of calcareous sand with low moisture content is 2.86, and 2.79 for silica sand.
  • loading
  • [1]
    单华刚, 汪稔. 钙质砂中的桩基工程研究进展述评 [J]. 岩土力学, 2000, 21(3): 299–304, 308. DOI: 10.16285/j.rsm.2000.03.027.

    SHAN H G, WANG R. Development of study on pile in calcareous sand [J]. Rock and Soil Mechanics, 2000, 21(3): 299–304, 308. DOI: 10.16285/j.rsm.2000.03.027.
    [2]
    刘崇权, 汪稔. 钙质砂物理力学性质初探 [J]. 岩土力学, 1998, 19(1): 32–37, 44. DOI: 10.16285/j.rsm.1998.01.006.

    LIU C Q, WANG R. Preliminary research on physical and mechanical properties of calcareous sand [J]. Rock and Soil Mechanics, 1998, 19(1): 32–37, 44. DOI: 10.16285/j.rsm.1998.01.006.
    [3]
    US, Department of the Army. Fundamentals of protective design for conventional weapons: TM5-855-1 [S]. Washington: US Department of the Army, 1986.
    [4]
    穆朝民, 任辉启, 李永池, 等. 爆炸波在高饱和度饱和土中传播规律的研究 [J]. 岩土力学, 2010, 31(3): 875–880. DOI: 10.16285/j.rsm.2010.03.051.

    MU C M, REN H Q, LI Y C, et al. Propagation laws of blast wave in saturated soils with high saturation degree [J]. Rock and Soil Mechanics, 2010, 31(3): 875–880. DOI: 10.16285/j.rsm.2010.03.051.
    [5]
    屈俊童, 周健, 吴晓峰. 爆炸法密实砂土地基(Ⅰ)——研究现状 [J]. 工程爆破, 2006, 12(3): 14–18. DOI: 10.3969/j.issn.1006-7051.2006.03.003.

    QU J T, ZHOU J, WU X F. Explosive compaction of sand ground foundation (Ⅰ)-review [J]. Engineering Blasting, 2006, 12(3): 14–18. DOI: 10.3969/j.issn.1006-7051.2006.03.003.
    [6]
    屈俊童, 周健, 吴晓峰. 爆炸法密实砂土地基(Ⅳ)——设计方法 [J]. 工程爆破, 2007, 13(2): 1–6. DOI: 10.3969/j.issn.1006-7051.2007.02.001.

    QU J T, ZHOU J, WU X F. Explosive compaction of sand foundation (Ⅳ)-design method [J]. Engineering Blasting, 2007, 13(2): 1–6. DOI: 10.3969/j.issn.1006-7051.2007.02.001.
    [7]
    屈俊童, 周健, 吴晓峰. 爆炸法密实砂土地基(Ⅱ)——现场试验 [J]. 工程爆破, 2006, 12(4): 4–8. DOI: 10.3969/j.issn.1006-7051.2006.04.002.

    QU J T, ZHOU J, WU X F. Explosive compaction of sand foundation (Ⅱ)-in situ trails [J]. Engineering Blasting, 2006, 12(4): 4–8. DOI: 10.3969/j.issn.1006-7051.2006.04.002.
    [8]
    KAGGWA W S, BOOKER J R, CARTER J P. Residual strains in calcareous sand due to irregular cyclic loading [J]. Journal of Geotechnical Engineering, 1991, 117(2): 201–218. DOI: 10.1061/(ASCE)0733-9410(1991)117:2(201.
    [9]
    曹梦, 叶剑红. 中国南海钙质砂蠕变-应力-时间四参数数学模型 [J]. 岩土力学, 2019, 40(5): 1771–1777. DOI: 10.16285/j.rsm.2018.1267.

    CAO M, YE J H. Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771–1777. DOI: 10.16285/j.rsm.2018.1267.
    [10]
    LADE P V, LIGGIO JR C D, NAM J. Strain rate, creep, and stress drop-creep experiments on crushed coral sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 941–953. DOI: 10.1061/(ASCE)GT.1943-5606.0000067.
    [11]
    XIAO Y, LIU H, XIAO P, et al. Fractal crushing of carbonate sands under impact loading [J]. Géotechnique Letters, 2016, 6(3): 199–204. DOI: 10.1680/jgele.16.00056.
    [12]
    LV Y R, LI X, WANG Y. Particle breakage of calcareous sand at high strain rates [J]. Powder Technology, 2020, 366: 776–787. DOI: 10.1016/j.powtec.2020.02.062.
    [13]
    朱晓亮. 冲击荷载及大荷载作用下钙质砂颗粒破碎特性研究 [D]. 长春: 吉林大学, 2015: 1–6.

    ZHU X L. Study on the crushing characteristics of calcareous sand particles under impact load and large load [D]. Changchun: Jilin University, 2015: 1–6.
    [14]
    魏久淇, 吕亚茹, 刘国权, 等. 钙质砂一维冲击响应及吸能特性试验 [J]. 岩土力学, 2019, 40(1): 191–198, 206. DOI: 10.16285/j.rsm.2017.1235.

    WEI J Q, LV Y R, LIU G Q, et al. One-dimensional impact responses and energy absorption of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(1): 191–198, 206. DOI: 10.16285/j.rsm.2017.1235.
    [15]
    LV Y R, LI F, LIU Y W, et al. Comparative study of coral sand and silica sand in creep under general stress states [J]. Canadian Geotechnical Journal, 2017, 54(11): 1601–1611. DOI: 10.1139/cgj-2016-0295.
    [16]
    吕亚茹, 王明洋, 魏久淇, 等. 钙质砂的SHPB实验技术及其动态力学性能 [J]. 爆炸与冲击, 2018, 38(6): 1262–1270. DOI: 10.11883/bzycj-2017-0179.

    LV Y R, WANG M Y, WEI J Q, et al. Experimental techniques of SHPB for calcareous sand and its dynamic behaviors [J]. Explosion and Shock Waves, 2018, 38(6): 1262–1270. DOI: 10.11883/bzycj-2017-0179.
    [17]
    于潇, 陈力, 方秦. 珊瑚砂中应力波衰减规律的实验研究 [J]. 岩石力学与工程学报, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.

    YU X, CHEN L, FANG Q. Experimental study on the attenuation of stress wave in coral sand [J]. Chinese Journal of Rock Mechanicals and Engineering, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.
    [18]
    徐学勇. 饱和钙质砂爆炸响应动力特性研究 [D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2009: 1−13.
    [19]
    赵章泳, 王明洋, 邱艳宇, 等. 爆炸波在非饱和钙质砂中的传播规律 [J]. 爆炸与冲击, 2020, 40(8): 083201. DOI: 10.11883/bzycj-2019-0389.

    ZHAO Z Y, WANG M Y, QIU Y Y, et al. The propagation laws of blast wave in unsaturated calcareous sand [J]. Explosion and Shock Waves, 2020, 40(8): 083201. DOI: 10.11883/bzycj-2019-0389.
    [20]
    赵章泳, 邱艳宇, 王明洋, 等. 非饱和钙质砂中平面爆炸波传播试验研究 [J]. 防护工程, 2017, 39(3): 22–28.

    ZHAO Z Y, QIU Y Y, WANG M Y, et al. Experimental study on plane explosive wave propagation in unsaturated calcareous sand [J]. Protective Engineering, 2017, 39(3): 22–28.
    [21]
    石晗. 钙质砂地基爆炸响应动力特性试验研究 [D]. 武汉: 武汉科技大学, 2020: 1–6. DOI: 10.27380/d.cnki.gwkju.2020.000474.

    SHI H. Experimental study on dynamic characteristics of explosion response of calcareous sand foundation [D]. Wuhan: Wuhan University of Science and Technology, 2020: 1–6. DOI: 10.27380/d.cnki.gwkju.2020.000474.
    [22]
    张家铭. 钙质砂基本力学性质及颗粒破碎影响研究 [D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2004: 1–9.

    ZHANG J M. Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage [D]. Wuhan: Chinese Academy of Sciences (Institute of Rock & Soil Mechanics), 2004: 1–9.
    [23]
    AMBROSINI R D, LUCCIONI B M, DANESI R F, et al. Size of craters produced by explosive charges on or above the ground surface [J]. Shock Waves, 2002, 12(1): 69–78. DOI: 10.1007/s00193-002-0136-3.
    [24]
    AMBROSINI R D, LUCCIONI B M. Craters produced by explosions on the soil surface [J]. Journal of Applied Mechanics, 2006, 73(6): 890–900. DOI: 10.1115/1.2173283.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (310) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return