Volume 43 Issue 5
May  2023
Turn off MathJax
Article Contents
HUANG Xieping, KONG Xiangzhen, CHEN Zuyu, FANG Qin. Damage effects of underwater explosions on gravity dams and optimal standoff distances[J]. Explosion And Shock Waves, 2023, 43(5): 052202. doi: 10.11883/bzycj-2022-0113
Citation: HUANG Xieping, KONG Xiangzhen, CHEN Zuyu, FANG Qin. Damage effects of underwater explosions on gravity dams and optimal standoff distances[J]. Explosion And Shock Waves, 2023, 43(5): 052202. doi: 10.11883/bzycj-2022-0113

Damage effects of underwater explosions on gravity dams and optimal standoff distances

doi: 10.11883/bzycj-2022-0113
  • Received Date: 2022-03-23
  • Rev Recd Date: 2022-05-21
  • Available Online: 2022-05-27
  • Publish Date: 2023-05-05
  • To investigate the standoff distance of underwater explosions on the damage to gravity dams and to explore whether there is an “optimal standoff distance”, a numerical model of a fully-coupled explosive-water-air-gravity dam was established. The numerical model was validated by comparing it with centrifuge test results. The results demonstrated that the employed numerical model could predict the dam failures and the effect of bubble pulse well. Then, a numerical scheme including 60 numerical calculations was designed. In these calculations, the water depth is 600 mm, the explosive mass is 2.2 g, and the geometrical scaling factor of the gravity dam model is 1/80. The detonation depth ranges from 50 to 250 mm with five detonation depths. Each detonation depth corresponds to 12 standoff distances ranging from 10 to 200 mm, with the scaled standoff distance ranging from 0.077 to 1.54 m/kg1/3. The damage degrees to the gravity dam under underwater explosions with different standoff distances are compared. Quantitative comparisons of dam average damage, element erosion rate, stress, and strain are also presented. The results show that for the overall structural failure of the gravity dam, such as the structural bending-induced tensile failure, there is an “optimal standoff distance” for the damage effects of underwater explosions on gravity dams, that is, with the increase of standoff distance, the damage degree of gravity dam increases first and then decreases. The quantitative results also indicate that with the increase of standoff distance, the average damage of the damaged area in the dam upstream face, the element erosion rate, the average value of the maximum tensile stress of the dam heel, and the average value of the maximum tensile strain of the dam heel all increase first and then decrease, and reach their maximum values around a standoff distance of 40 mm. With identical water depth, explosive mass, and geometrical model of gravity dam, the “optimal standoff distances” for the damage effects of near-surface underwater explosions at five different detonation depths on the gravity dam are all near 40 mm. It suggests that for near-surface underwater explosions, the detonation depth owns limited influence on the “optimal standoff distance”.
  • loading
  • [1]
    WANG G H, ZHANG S R, KONG Y, et al. Comparative study of the dynamic response of concrete gravity dams subjected to underwater and air explosions [J]. Journal of Performance of Constructed Facilities, 2015, 29(4): 04014092. DOI: 10.1061/(ASCE)CF.1943-5509.0000589.
    [2]
    WANG G H, LU W B, YANG G D, et al. A state-of-the-art review on blast resistance and protection of high dams to blast loads [J]. International Journal of Impact Engineering, 2020, 139: 103529. DOI: 10.1016/j.ijimpeng.2020.103529.
    [3]
    陈叶青, 吕林梅, 汪剑辉, 等. 爆炸冲击荷载下的大坝抗爆性能及防护研究进展 [J]. 防护工程, 2021, 43(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2021.02.001.

    CHEN Y Q, LV L M, WANG J H, et al. Review of blast resistance performance and protection of dams under blast shock load [J]. Protective Engineering, 2021, 43(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2021.02.001.
    [4]
    陈叶青, 吕林梅, 王高辉, 等. 大坝抗爆性能评估研究进展 [J]. 土木工程学报, 2021, 54(10): 9–19. DOI: 10.15951/j.tmgcxb.2021.10.003.

    CHEN Y Q, LV L M, WANG G H, et al. Review on the blast-resistance performance evaluation of dams [J]. China Civil Engineering Journal, 2021, 54(10): 9–19. DOI: 10.15951/j.tmgcxb.2021.10.003.
    [5]
    VANADIT-ELLIS W, DAVIS L K. Physical modeling of concrete gravity dam vulnerability to explosions [C]//2010 International Water Side Security Conference. Carrara: IEEE, 2010: 1-11. DOI: 10.1109/WSSC.2010.5730291.
    [6]
    HUANG X P, HU J, ZHANG X D, et al. Bending failure of a concrete gravity dam subjected to underwater explosion [J]. Journal of Zhejiang University-Science A, 2020, 21(12): 976–991. DOI: 10.1631/jzus.A2000194.
    [7]
    HUANG X P, KONG X Z, HU J, et al. Failure modes of concrete gravity dam subjected to near-field underwater explosion: centrifuge test and numerical simulation [J]. Engineering Failure Analysis, 2022, 137: 106243. DOI: 10.1016/j.engfailanal.2022.106243.
    [8]
    HUANG X P, HU J, ZHANG X D, et al. Effect of bubble pulse on concrete gravity dam subjected to underwater explosion: centrifuge test and numerical simulation [J]. Ocean Engineering, 2022, 243: 110291. DOI: 10.1016/j.oceaneng.2021.110291.
    [9]
    ZHANG S R, WANG G H, WANG C, et al. Numerical simulation of failure modes of concrete gravity dams subjected to underwater explosion [J]. Engineering Failure Analysis, 2014, 36: 49–64.
    [10]
    王高辉, 张社荣, 卢文波, 等. 水下爆炸冲击荷载下混凝土重力坝的破坏效应 [J]. 水利学报, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.

    WANG G H, ZHANG S R, LU W B, et al. Damage effects of concrete gravity dams subjected to underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.
    [11]
    LI Q, WANG G H, LU W B, et al. Influence of reservoir water levels on the protective performance of concrete gravity dams subjected to underwater explosions [J]. Journal of Structural Engineering, 2018, 144(9): 04018143.
    [12]
    WANG C, WEI P Y, WANG X H, et al. Blast-resistance and damage evaluation of concrete gravity dam exposed to underwater explosion: considering the initial stress field [J]. KSCE Journal of Civil Engineering, 2021, 25(8): 2922–2935. DOI: 10.1007/s12205-021-1650-0.
    [13]
    ZHANG Q L, HU Y G, LIU M S, et al. Role of negative pressure in structural responses of gravity dams to underwater explosion loadings: the need to consider local cavitation [J]. Engineering Failure Analysis, 2021, 122: 105270. DOI: 10.1016/j.engfailanal.2021.105270.
    [14]
    SHU Y Z, WANG G H, LU W B, et al. Damage characteristics and failure modes of concrete gravity dams subjected to penetration and explosion [J]. Engineering Failure Analysis, 2022, 134: 106030. DOI: 10.1016/j.engfailanal.2022.106030.
    [15]
    ZHU J G, CHEN Y Q, LYU L. Failure analysis for concrete gravity dam subjected to underwater explosion: a comparative study [J]. Engineering Failure Analysis, 2022, 134: 106052. DOI: 10.1016/j.engfailanal.2022.106052.
    [16]
    REN X D, SHAO Y. Numerical investigation on damage of concrete gravity dam during noncontact underwater explosion [J]. Journal of Performance of Constructed Facilities, 2019, 33(6): 04019066. DOI: 10.1061/(ASCE)CF.1943-5509.0001332.
    [17]
    吕林梅, 陈叶青, 魏晓丽, 等. 基于毁伤面积率指标的混凝土重力坝毁伤评估方法研究 [J]. 防护工程, 2020, 42(2): 28–32. DOI: 10.3969/j.issn.1674-1854.2020.02.005.

    LV L M, CHEN Y Q, WEI X L, et al. Study of damage assessment method of concrete gravity dam based on damage-area ratio index [J]. Protective Engineering, 2020, 42(2): 28–32. DOI: 10.3969/j.issn.1674-1854.2020.02.005.
    [18]
    李麒, 王高辉, 卢文波, 等. 混凝土重力坝水下爆炸毁伤快速识别方法研究 [J]. 振动与冲击, 2020, 39(24): 46–53,62. DOI: 10.13465/j.cnki.jvs.2020.24.007.

    LI Q, WANG G H, LU W B, et al. A rapid identification method for underwater explosion damage of a concrete gravity dam [J]. Journal of Vibration and Shock, 2020, 39(24): 46–53,62. DOI: 10.13465/j.cnki.jvs.2020.24.007.
    [19]
    WANG X H, ZHANG S R, WANG C, et al. Blast-induced damage and evaluation method of concrete gravity dam subjected to near-field underwater explosion [J]. Engineering Structures, 2020, 209: 109996. DOI: 10.1016/j.engstruct.2019.109996.
    [20]
    张社荣, 王高辉, 王超, 等. 水下爆炸冲击荷载作用下混凝土重力坝的破坏模式 [J]. 爆炸与冲击, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07.

    ZHANG S R, WANG G H, WANG C, et al. Failure mode analysis of concrete gravity dam subjected to underwater explosion [J]. Explosion and Shock Waves, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07.
    [21]
    张启灵, 李端有, 李波. 水下爆炸冲击作用下重力坝的损伤发展及破坏模式 [J]. 爆炸与冲击, 2012, 32(6): 609–615. DOI: 10.11883/1001-1455(2012)06-0609-07.

    ZHANG Q L, LI D Y, LI B. Damage propagation and failure mode of gravity dam subjected to underwater explosion [J]. Explosion and Shock Waves, 2012, 32(6): 609–615. DOI: 10.11883/1001-1455(2012)06-0609-07.
    [22]
    WANG G H, ZHANG S R. Damage prediction of concrete gravity dams subjected to underwater explosion shock loading [J]. Engineering Failure Analysis, 2014, 39: 72–91. DOI: 10.1016/j.engfailanal.2014.01.018.
    [23]
    HUANG X P, KONG X Z, HU J, et al. The influence of free water content on ballistic performances of concrete targets [J]. International Journal of Impact Engineering, 2020, 139: 103530. DOI: 10.1016/j.ijimpeng.2020.103530.
    [24]
    ROSSI P. A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates [J]. Materials and Structures, 1991, 24(6): 422–424. DOI: 10.1007/BF02472015.
    [25]
    HUANG X P, KONG X Z, CHEN Z Y, et al. Equation of state for saturated concrete: a mesoscopic study [J]. International Journal of Impact Engineering, 2020, 144: 103669. DOI: 10.1016/j.ijimpeng.2020.103669.
    [26]
    KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [27]
    ZHAO F Q, WEN H M. Effect of free water content on the penetration of concrete [J]. International Journal of Impact Engineering, 2018, 121: 180–190. DOI: 10.1016/j.ijimpeng.2018.06.007.
    [28]
    XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
    [29]
    黄谢平, 孔祥振, 陈祖煜, 等. 近水面、库中、库底水下爆炸荷载作用下混凝土重力坝的破坏模式对比 [J]. 土木工程学报, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.

    HUANG X P, KONG X Z, CHEN Z Y, et al. Comparison of failure modes of concrete gravity dams by underwater explosion loads near the water free surface, the middle, and the bottom of the reservoir [J]. China Civil Engineering Journal, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.
    [30]
    GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble [J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601. DOI: 10.1121/1.1458590.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (573) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return