考虑附加湍流的天然气爆炸超压预测

李艳超 梁博 江雨婷

李艳超, 梁博, 江雨婷. 考虑附加湍流的天然气爆炸超压预测[J]. 爆炸与冲击, 2023, 43(11): 115402. doi: 10.11883/bzycj-2023-0098
引用本文: 李艳超, 梁博, 江雨婷. 考虑附加湍流的天然气爆炸超压预测[J]. 爆炸与冲击, 2023, 43(11): 115402. doi: 10.11883/bzycj-2023-0098
LI Yanchao, LIANG Bo, JIANG Yuting. Prediction of natural gas explosion overpressure considering external turbulence[J]. Explosion And Shock Waves, 2023, 43(11): 115402. doi: 10.11883/bzycj-2023-0098
Citation: LI Yanchao, LIANG Bo, JIANG Yuting. Prediction of natural gas explosion overpressure considering external turbulence[J]. Explosion And Shock Waves, 2023, 43(11): 115402. doi: 10.11883/bzycj-2023-0098

考虑附加湍流的天然气爆炸超压预测

doi: 10.11883/bzycj-2023-0098
基金项目: 火灾与爆炸安全防护重庆市重点实验室(军用油库安全与设施设备评测实验室)开放基金(LQ21KFJJ09)
详细信息
    作者简介:

    李艳超(1989-  ),男,博士,副教授,lyc092451@dlut.edu.cn

  • 中图分类号: O389; TK91

Prediction of natural gas explosion overpressure considering external turbulence

  • 摘要: 为预先评估外加湍流工况下天然气的爆炸超压峰值,通过揭示外加湍流对天然气爆炸火焰形态、火焰前锋速度和爆炸超压的影响规律,建立了耦合外加湍流的天然气爆炸超压峰值预测模型。结果表明:外加湍流可使火焰加速传播,且随着外加湍流强度的增加,火焰前锋速度逐渐增加;随着外加湍流强度的增加,爆炸超压峰值和最大升压速率逐渐增加;随着压力监测点和点火位置间距的增加,爆炸超压峰值和最大升压速率整体呈减小的变化趋势。外加湍流工况下天然气的爆炸超压预测必须考虑火焰的加速特征,实验测得爆炸超压峰值介于层流火焰模型和湍流火焰模型计算的爆炸超压峰值之间。
  • 图  1  外加湍流工况下天然气爆炸实验平台

    Figure  1.  Experimental platform of natural gas explosion under external turbulence

    图  2  外加湍流对天然气爆炸火焰形态演变的影响规律

    Figure  2.  Effects of external turbulence on flame evolution of natural gas explosion

    图  3  外加湍流对天然气爆炸火焰半径和火焰前锋速度的影响规律

    Figure  3.  Effects of external turbulence on flame radius and flame front velocity of natural gas explosion

    图  4  外加湍流实验的湍流燃烧分区

    Figure  4.  Turbulent combustion regime of current experiments

    图  5  外加湍流对天然气爆炸超压峰值和最大升压速率的影响规律

    Figure  5.  Effects of external turbulence on the maximum explosion pressure and the maximum rate of pressure rise of natural gas explosion

    图  6  耦合外加湍流的天然气爆炸超压峰值预测

    Figure  6.  Theoretical prediction of the maximum explosion pressure considering external turbulence

  • [1] KAMINSKI C F, HULT J, ALDÉN M, et al. Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulations [J]. Proceedings of the Combustion Institute, 2000, 28(1): 399–405. DOI: 10.1016/S0082-0784(00)80236-2.
    [2] VAN OIJEN J A, GROOT G R A, BASTIAANS R J M, et al. A flamelet analysis of the burning velocity of premixed turbulent expanding flames [J]. Proceedings of the Combustion Institute, 2005, 30(1): 657–664. DOI: 10.1016/j.proci.2004.08.159.
    [3] CAI X, WANG J H, BIAN Z J, et al. Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: effect of Lewis number [J]. Combustion and Flame, 2020, 212: 1–12. DOI: 10.1016/j.combustflame.2019.10.019.
    [4] FAIRWEATHER M, ORMSBY M P, SHEPPARD C G W, et al. Turbulent burning rates of methane and methane-hydrogen mixtures [J]. Combustion and Flame, 2009, 156(4): 780–790. DOI: 10.1016/j.combustflame.2009.02.001.
    [5] BAUWENS C R, BERGTHORSON J M, DOROFEEV S B. On the interaction of the Darrieus-Landau instability with weak initial turbulence [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2815–2822. DOI: 10.1016/j.proci.2016.07.030.
    [6] LAWES M, ORMSBY M P, SHEPPARD C G W, et al. The turbulent burning velocity of iso-octane/air mixtures [J]. Combustion and Flame, 2012, 159(5): 1949–1959. DOI: 10.1016/j.combustflame.2011.12.023.
    [7] WANG J H, ZHANG M, XIE Y L, et al. Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa [J]. Experimental Thermal and Fluid Science, 2013, 50: 90–96. DOI: 10.1016/j.expthermflusci.2013.05.008.
    [8] BREQUIGNY P, HALTER F, MOUNAÏM-ROUSSELLE C. Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel [J]. Experimental Thermal and Fluid Science, 2016, 73: 33–41. DOI: 10.1016/j.expthermflusci.2015.08.021.
    [9] CHAUDHURI S, SAHA A, LAW C K. On flame-turbulence interaction in constant-pressure expanding flames [J]. Proceedings of the Combustion Institute, 2015, 35(2): 1331–1339. DOI: 10.1016/j.proci.2014.07.038.
    [10] KOBAYASHI H, TAMURA T, MARUTA K, et al. Burning velocity of turbulent premixed flames in a high-pressure environment [J]. Symposium (International) on Combustion, 1996, 26(1): 389–396. DOI: 10.1016/s0082-0784(96)80240-2.
    [11] KOBAYASHI H, SEYAMA K, HAGIWARA H, et al. Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature [J]. Proceedings of the Combustion Institute, 2005, 30(1): 827–834. DOI: 10.1016/j.proci.2004.08.098.
    [12] CHAUDHURI S, WU F J, ZHU D L, et al. Flame speed and self-similar propagation of expanding turbulent premixed flames [J]. Physical Review Letters, 2012, 108(4): 044503. DOI: 10.1103/PhysRevLett.108.044503.
    [13] LIU C C, SHY S S, PENG M W, et al. High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers [J]. Combustion and Flame, 2012, 159(8): 2608–2619. DOI: 10.1016/j.combustflame.2012.04.006.
    [14] BRADLEY D, LAU A K C, LAWES M, et al. Flame stretch rate as a determinant of turbulent burning velocity [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1992, 338(1650): 359–387. DOI: 10.1098/rsta.1992.0012.
    [15] GALMICHE B, MAZELLIER N, HALTER F, et al. Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV, PIV and TR-PIV measurements [J]. Experiments in Fluids, 2014, 55(1): 1636. DOI: 10.1007/s00348-013-1636-x.
    [16] KUMAR V. FLUENT 6.3 user’s guide [S]. New York: Fluent Inc, 2006.
    [17] KIM W K, MOGI T, DOBASHI R. Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1501–1505. DOI: 10.1016/j.jlp.2013.09.009.
    [18] LI Y C, BI M S, ZHOU Y H, et al. Experimental and theoretical evaluation of hydrogen cloud explosion with built-in obstacles [J]. International Journal of Hydrogen Energy, 2020, 45(51): 28007–28018. DOI: 10.1016/j.ijhydene.2020.07.067.
    [19] XIAO H H, HE X C, DUAN Q L, et al. An investigation of premixed flame propagation in a closed combustion duct with a 90° bend [J]. Applied Energy, 2014, 134: 248–256. DOI: 10.1016/j.apenergy.2014.07.071.
    [20] JIANG Y T, LI Y C, ZHOU Y H, et al. Investigation on unconfined hydrogen cloud explosion with external turbulence [J]. International Journal of Hydrogen Energy, 2022, 47(13): 8658–8670. DOI: 10.1016/j.ijhydene.2021.12.167.
  • 加载中
图(6)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  54
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 修回日期:  2023-08-29
  • 网络出版日期:  2023-10-24
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回