单轨火箭橇-发动机一体化设计

郝芬芬 赵项伟 王磊 程明灿 刘禁

郝芬芬, 赵项伟, 王磊, 程明灿, 刘禁. 单轨火箭橇-发动机一体化设计[J]. 爆炸与冲击, 2024, 44(5): 052901. doi: 10.11883/bzycj-2023-0259
引用本文: 郝芬芬, 赵项伟, 王磊, 程明灿, 刘禁. 单轨火箭橇-发动机一体化设计[J]. 爆炸与冲击, 2024, 44(5): 052901. doi: 10.11883/bzycj-2023-0259
HAO Fenfen, ZHAO Xiangwei, WANG Lei, CHENG Mingcan, LIU Jin. Integrated design of monorail rocket sled and motor[J]. Explosion And Shock Waves, 2024, 44(5): 052901. doi: 10.11883/bzycj-2023-0259
Citation: HAO Fenfen, ZHAO Xiangwei, WANG Lei, CHENG Mingcan, LIU Jin. Integrated design of monorail rocket sled and motor[J]. Explosion And Shock Waves, 2024, 44(5): 052901. doi: 10.11883/bzycj-2023-0259

单轨火箭橇-发动机一体化设计

doi: 10.11883/bzycj-2023-0259
详细信息
    作者简介:

    郝芬芬(1987- ),女,博士研究生,副研究员,haofenfen2010@stu.xjtu.edu.cn

    通讯作者:

    赵项伟(1992- ),男,硕士,助理研究员,zhaoxiangwei1992@sina.cn

  • 中图分类号: O389; TJ013.2

Integrated design of monorail rocket sled and motor

  • 摘要: 针对传统单轨火箭橇系统零部件附加质量过高的问题,提出了一种由发动机和滑靴组成的箭橇一体化结构,采用三维欧拉-伯努利梁单元对火箭橇系统进行离散,对滑靴位置做寻优计算,发现中滑靴处于前后滑靴的中间位置时,系统振动量最小,位置分布最优。设计了3种滑靴与发动机壳体连接的方案:(1) 滑靴通过锯齿形焊缝与发动机壳体包覆连接,(2) 发动机壳体直接堆放在滑靴靴体上,(3) 滑靴通过支撑板过渡件与发动机壳体连接。采用橇-轨耦合动力学方法计算方案2和方案3的在轨安全性,方案3的火箭橇系统力学环境更优,其系统附加质量比传统单轨橇降低了73%。最后,开展了箭橇一体化验证试验,验证了箭橇一体化设计方案的合理性。
  • 图  1  传统单轨橇

    Figure  1.  Traditional monorail sled

    图  2  火箭橇模型

    Figure  2.  Model of rocket sled

    图  3  火箭橇离散模型

    Figure  3.  Discrete model of rocket sled

    图  4  不同中滑靴位置时各滑靴竖向过载的均方根

    Figure  4.  Root mean square of vertical overloads for each slipper located at different middle slipper positions

    图  5  不同中滑靴位置时各滑靴侧向过载的均方根

    Figure  5.  Root mean square of lateral overloads for each slipper located at different middle slipper positions

    图  6  滑靴和发动机壳体的固连方案

    Figure  6.  The retention scheme of slipper and motor housing

    图  7  轨道的不平顺度

    Figure  7.  Roughness of the rail

    图  8  轨道系统

    Figure  8.  Rail system

    图  9  橇-轨耦合系统模型

    Figure  9.  Sled-rail coupling system model

    图  10  橇-轨耦合系统模型的局部网格划分

    Figure  10.  Local grid model of sled-rail coupling system

    图  11  试验橇体模型

    Figure  11.  Model of test sled

    图  12  发动机中段顶部的振动过载

    Figure  12.  Vibration overloads at the top of the mid-motor section

    图  13  发动机中段顶部振动过载的均方根

    Figure  13.  Root mean square of vibration overloads at the top of the mid-motor section

    图  14  一体化橇与传统橇发动机中段顶部振动过载的均方根对比

    Figure  14.  Comparison of root mean square of vibration overloads between integrated sled and traditional sled at the top of the mid-motor section

    表  1  720 m/s时各部件的气动力

    Table  1.   Aerodynamic force of each component at the speed of 720 m/s

    部件 气动阻力/N 气动升力/N
    二级橇舱体 13693 −4630
    二级橇阻力板 15370 −223
    一级橇 8613 7011
    二级橇前滑靴 10122 −1724
    二级橇后滑靴 1987 −316
    一级橇前滑靴 742 86
    下载: 导出CSV

    表  2  滑靴间隙设置

    Table  2.   Slippers gap setting

    滑靴编号侧向间隙/mm竖向间隙/mm
    10.701.50
    20.701.50
    30.661.44
    40.661.44
    50.731.65
    60.781.77
    下载: 导出CSV

    表  3  关键部件振动过载的均方根

    Table  3.   Root mean square of overloads for critical components

    部件 σ/g
    方案2 方案3
    竖向 侧向 竖向 侧向
    前滑靴 55 68 57 65
    中滑靴 36 81 39 50
    后滑靴 65 104 39 80
    发动机前端 27 91 22 49
    发动机后端 27 98 22 38
    下载: 导出CSV
  • [1] 郝芬芬, 王小龙, 周学文, 等. 基于磁流变阻尼器的火箭橇半主动动力吸振器 [J]. 兵器装备工程学报, 2023, 44(3): 55–59. DOI: 10.11809/bqzbgcxb2023.03.008.

    HAO F F, WANG X L, ZHOU X W, et al. Semi-active dynamic vibration absorbers for rocket sleds based on magneto-rheological dampers [J]. Journal of Ordnance Equipment Engineering, 2023, 44(3): 55–59. DOI: 10.11809/bqzbgcxb2023.03.008.
    [2] 周学文, 赵项伟, 杨珍, 等. 单轨火箭橇在轨动力特性数值分析 [J]. 航空动力学报, 2022, 37(6): 1327–1335. DOI: 10.13224/j.cnki.jasp.20210254.

    ZHOU X W, ZHAO X W, YANG Z, et al. Numerical analysis of dynamic characteristics of monorail rocket sled on rail [J]. Journal of Aerospace Power, 2022, 37(6): 1327–1335. DOI: 10.13224/j.cnki.jasp.20210254.
    [3] MEACHAM M B, KENNETT A, TOWNSEND D J, et al. Rocket sled propelled testing of a supersonic inflatable aerodynamic decelerator [C]//Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference. Daytona Beach: AIAA, 2013: 1–13. DOI: 10.2514/6.2013-1351.
    [4] 郑奎涛, 龚明生, 蒋大鹏, 等. 基于火箭橇的无人机碰撞民用飞机试验技术研究 [J]. 航空工程进展, 2020, 11(5): 724–729. DOI: 10.16615/j.cnki.1674-8190.2020.05.016.

    ZHENG K T, GONG M S, JIANG D P, et al. Research on the test technology of civil aircraft impacted by UAV based on rocket sled [J]. Advances in Aeronautical Science and Engineering, 2020, 11(5): 724–729. DOI: 10.16615/j.cnki.1674-8190.2020.05.016.
    [5] 杨珍, 范坤, 胡兵, 等. 超声速单轨火箭橇动态载荷预示技术研究 [J]. 兵器装备工程学报, 2019, 40(3): 247–251. DOI: 10.11809/bqzbgcxb2019.03.050.

    YANG Z, FAN K, HU B, et al. Study on dynamic load prediction of the supersonic monorail rocket sled [J]. Journal of Ordnance Equipment Engineering, 2019, 40(3): 247–251. DOI: 10.11809/bqzbgcxb2019.03.050.
    [6] DANG T J, LIU Z, ZHOU X W, et al. Dynamic response of a hypersonic rocket sled considering friction and wear [J]. Journal of Spacecraft and Rockets, 2022, 59(4): 1289–1303. DOI: 10.2514/1.a35267.
    [7] CHEKOV A. Transformation of U. S. missile defense policy in the context of countering hypersonic weapons [J]. World Economy and International Relations, 2023, 67(4): 40–52. DOI: 10.20542/0131-2227-2023-67-4-40-52.
    [8] GAUDET B, FURFARO R. Terminal adaptive guidance for autonomous hypersonic strike weapons via reinforcement metalearning [J]. Journal of Spacecraft and Rockets, 2023, 60(1): 286–298. DOI: 10.2514/1.A35396.
    [9] ZHANG L, YANG J L, DUAN T C, et al. Numerical and experimental investigation on nosebleed air jet control for hypersonic vehicle [J]. Aerospace, 2023, 10(6): 552. DOI: 10.3390/aerospace10060552.
    [10] YAN P Z, ZHANG L S, WANG W J, et al. Numerical simulation of aerodynamic and aeroacoustic characteristics of subsonic rocket sled [J]. Applied Acoustics, 2021, 182: 108208. DOI: 10.1016/j.apacoust.2021.108208.
    [11] MINTO D W, BOSMAJIAN N. Hypersonic test capabilities at the Holloman high-speed test track [M]//LU F K, MARREN D E. Advanced Hypersonic Test Facilities. Reston: AIAA, 2002: 499–530. DOI: 10.2514/5.9781600866678.0499.0530.
    [12] WUERTEMBERGER L, PALAZOTTO A N. Evaluation of flow and failure properties of treated 4130 steel [J]. Journal of Dynamic Behavior of Materials, 2016, 2(2): 207–222. DOI: 10.1007/s40870-016-0059-1.
    [13] BUTOVA S V, GERASIMOV S I, EROFEEV V I, et al. Stability of high-speed objects moving along a rocket track guide [J]. Journal of Machinery Manufacture and Reliability, 2015, 44(1): 1–5. DOI: 10.3103/S1052618815010021.
    [14] GERASIMOV S I, EROFEEV V I, KAMCHATNYI V G, et al. The sliding contact condition in stability analysis of stage motion for a rocket sled track facility [J]. Journal of Machinery Manufacture and Reliability, 2018, 47(3): 221–226. DOI: 10.3103/S105261881803007X.
    [15] 党峰, 范坤, 谢波涛, 等. 箭橇一体化设计方法研究 [J]. 测试技术学报, 2014, 28(1): 80–83. DOI: 10.3969/j.issn.1671-7449.2014.01.015.

    DANG F, FAN K, XIE B T, et al. Research on rocket and sled integration design method [J]. Journal of Test and Measurement Technology, 2014, 28(1): 80–83. DOI: 10.3969/j.issn.1671-7449.2014.01.015.
    [16] 胡兵, 郝芬芬, 闫华东, 等. 箭橇一体化固体火箭发动机模态分析 [J]. 兵器装备工程学报, 2022, 43(S1): 98–101. DOI: 10.11809/bqzbgcxb2022.S1.020.

    HU B, HAO F F, YAN H D, et al. Modal analysis of solid rocket motor integrated with sled [J]. Journal of Ordnance Equipment Engineering, 2022, 43(S1): 98–101. DOI: 10.11809/bqzbgcxb2022.S1.020.
    [17] 饶翼. 高超声速火箭橇运动稳定性若干影响因素分析与数值模拟 [D]. 西安: 西安建筑科技大学, 2019: 49–53. DOI: 10.27393/d.cnki.gxazu.2019.001212.

    RAO Y. Analysis and numerical simulation of several influencing factors on the stability of hypersonic rocket sled [D]. Xi’an: Xi’an University of Architecture and Technology, 2019: 49–53. DOI: 10.27393/d.cnki.gxazu.2019.001212.
    [18] 濮良贵, 陈庾梅. 机械设计教程 [M]. 西安: 西北工业大学出版社, 1998: 43–46.
    [19] 顾凯旋, 龚明生, 王磊, 等. 双轨火箭橇全时程动力学仿真分析研究 [J]. 航空工程进展, 2020, 11(2): 245–250. DOI: 10.16615/j.cnki.1674-8190.2020.02.014.

    GU K X, GONG M S, WANG L, et al. Study on full time dynamics simulation of two-track rocket sled [J]. Advances in Aeronautical Science and Engineering, 2020, 11(2): 245–250. DOI: 10.16615/j.cnki.1674-8190.2020.02.014.
    [20] 王健. 高速火箭橇-轨道系统耦合动力学研究 [D]. 南京: 南京理工大学, 2011.

    WANG J. The research for coupled dynamics of high speed rocket sled-track systems [D]. Nanjing: Nanjing University of Science and Technology, 2011.
    [21] 魏兵辉. 高超声速火箭橇干滑动摩擦磨损率预测研究 [D]. 西安: 西安交通大学, 2020.

    WEI B H. Prediction of dry sliding wear rate of hypersonic rocket skid [D]. Xi’an: Xi’an Jiaotong University, 2020.
    [22] 夏洪利, 范坤, 田建明. 单轨火箭橇滚转效应预示方法 [J]. 兵器装备工程学报, 2019, 40(5): 47–51. DOI: 10.11809/bqzbgcxb2019.05.011.

    XIA H L, FAN K, TIAN J M. Research on rolling effect predictable method of monorail rocket sled [J]. Journal of Ordnance Equipment Engineering, 2019, 40(5): 47–51. DOI: 10.11809/bqzbgcxb2019.05.011.
    [23] VAN THOAN P, WEN G L, YIN H F, et al. Optimization design for spur gear with stress-relieving holes [J]. International Journal of Computational Methods, 2015, 12(2): 1550006. DOI: 10.1142/S0219876215500061.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  31
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-21
  • 修回日期:  2024-01-22
  • 网络出版日期:  2024-03-04
  • 刊出日期:  2024-05-08

目录

    /

    返回文章
    返回