• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

球墨铸铁在低温及冲击载荷下的韧脆转变行为

张永新 范昌增 许泽建 齐凯丽 周舟

张永新, 范昌增, 许泽建, 齐凯丽, 周舟. 球墨铸铁在低温及冲击载荷下的韧脆转变行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0002
引用本文: 张永新, 范昌增, 许泽建, 齐凯丽, 周舟. 球墨铸铁在低温及冲击载荷下的韧脆转变行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0002
ZHANG Yongxin, FAN Changzeng, XU Zejian, QI Kaili, ZHOU Zhou. Ductile-brittle transition behavior of nodular cast iron under low temperature and impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0002
Citation: ZHANG Yongxin, FAN Changzeng, XU Zejian, QI Kaili, ZHOU Zhou. Ductile-brittle transition behavior of nodular cast iron under low temperature and impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0002

球墨铸铁在低温及冲击载荷下的韧脆转变行为

doi: 10.11883/bzycj-2024-0002
基金项目: 国家自然科学基金(12072040);
详细信息
    作者简介:

    张永新(1980- ),男,硕士,研究员

    通讯作者:

    许泽建(1979- ),男,博士,副教授,xuzejian@bit.edu.cn

  • 中图分类号: O346.1, O347.3

Ductile-brittle transition behavior of nodular cast iron under low temperature and impact loading

  • 摘要: 为了解核乏燃料储运容器等球墨铸铁结构在低温、冲击环境下的动态断裂特性,本文通过改进的霍普金森压杆技术对球墨铸铁材料在不同温度(20℃、−40℃、−60℃和−80℃)下的Ⅰ型动态断裂韧性进行了测试,并着重研究了材料的韧脆转变行为。试样的起裂时间由应变法确定,采用实验-数值方法确定了裂尖动态应力强度因子和材料的Ⅰ型动态断裂韧性。结果表明,在相同冲击速度加载下,球墨铸铁的Ⅰ型动态断裂韧性随温度的降低而明显降低,起裂时间也随温度降低而减少。通过对断口的微观分析,发现在不同温度下材料存在失效机理的转变。随着温度的降低,断口韧窝减少,河流花样以及解理台阶增多。通过对韧性与脆性微观形貌特征进行量化统计,表明了材料在低温下存在延性特征变弱、脆性增强的规律,这种韧脆转变现象与材料断裂韧性的测试结果相吻合。
  • 图  1  标准三点弯曲试样几何尺寸(单位:mm)

    Figure  1.  The geometric dimensions of standard three-point bending specimen (unit: mm)

    图  2  疲劳裂纹的预制

    Figure  2.  Prefabrication of fatigue cracks

    图  3  实验装置图

    Figure  3.  The experimental apparatus

    图  4  典型实验波形

    Figure  4.  The typical tested waveform

    图  5  低温动态断裂实验装置

    Figure  5.  The dynamic fracture experimental setup at low temperatures

    图  6  裂尖应力场云图

    Figure  6.  The stress fields diagram at the crack tip

    图  7  动态应力强度因子时程曲线

    Figure  7.  History of the dynamic stress intensity factor

    图  8  起裂时刻的确定(20℃, 2.2 TPa·m1/2/s)

    Figure  8.  The crack initiation time (20℃, 2.2 TPa·m1/2/s )

    图  9  高速摄影捕捉的试样裂纹扩展过程

    Figure  9.  Crack propagation process of specimen captured by high-speed photography

    图  10  加载速率与动态断裂韧性、起裂时间的关系(红色正方形,5 m/s;其余,13.5m/s)

    Figure  10.  The relationship between loading rate and DFT, and crack initiation time (red square, 5m/s. rest, 13.5m/s)

    图  11  不同温度下的宏观断口及断口表面分区(13.5m/s)

    Figure  11.  The macroscopic fracture and fracture surface partition at different temperatures (13.5 m/s)

    图  12  疲劳裂纹的起裂位置及扩展区的断口形貌

    Figure  12.  The microscopic morphology of fatigue crack initiation and propagation region

    图  13  动态裂纹扩展区的微观形貌(20 ℃)

    Figure  13.  The microscopic morphology of dynamic crack propagation region at 20 ℃

    图  14  动态裂纹扩展区的微观形貌

    Figure  14.  The microscopic morphology of dynamic crack propagation region

    图  15  动态裂纹扩展区的微观形貌(−80℃)

    Figure  15.  The microscopic morphology of dynamic crack propagation region at −80℃

    图  16  温度与不同微观特征面积占比的关系

    Figure  16.  Relation between temperature and area proportion of different morphologies

    表  1  不同材料的力学性能参数

    Table  1.   Mechanical properties of materials

    部件 材料 ρ/(kg·m−3) E/GPa μ
    入射杆 60Si2Mn 7850 210 0.3
    试样 球墨铸铁 7300 164 0.3
    夹具 40Cr 7820 199 0.3
    下载: 导出CSV

    表  2  常温下球墨铸铁的动态断裂参数

    Table  2.   Dynamic fracture parameters of nodular cast iron at room temperature

    温度/℃ 加载速率/(TPa·m1/2·s−1) 起裂时刻/μs 起裂时刻区间/μs 动态断裂韧性/(MPa·m1/2)
    20 2.20 53 [50,70] 116.6
    20 2.22 50 [50,70] 110.9
    20 1.85 62 [50,70] 115.0
    20 2.04 50 [50,60] 101.8
    下载: 导出CSV

    表  3  低温下球墨铸铁的动态断裂参数

    Table  3.   Dynamic fracture parameters of nodular cast iron at low temperatures

    温度/℃ 加载速率/(TPa·m1/2·s−1) 起裂时间/μs 动态断裂韧性/(MPa·m1/2) 平均值/(MPa·m1/2)
    −40 1.00 36 36.1 33.0
    0.93 35 32.6
    0.96 43 41.4
    0.71 31 22.0
    −60 0.55 25 13.71 13.3
    0.43 26 11.12
    0.58 22 12.85
    0.62 25 15.38
    −80 0.34 14 4.70 4.2
    0.32 7 2.27
    0.44 11 4.86
    0.43 12 5.10
    下载: 导出CSV
  • [1] 张海红, 胡晓明, 程久欢. LNG低温管道材料研究 [J]. 化工科技市场, 2010, 33(2): 32–41. DOI: 10.3969/j.issn.1009-0797.2010.01.057.

    ZHANG H H, HU X M, CHENG J H. Research on LNG cryogenic pipeline materials [J]. Chemical technology market, 2010, 33(2): 32–41. DOI: 10.3969/j.issn.1009-0797.2010.01.057.
    [2] 马敬仲, 丁建中, 尤其光, 等. 超低温高韧性球墨铸铁QT400-18AL的研究及应用 [J]. 铸造, 2012, 61(8): 856–861. DOI: 10.3969/j.issn.1001-4977.2012.08.002.

    MA J Z, DING J Z, YOU Q G, et al. Study and application of ultra-low temperature and high toughness ductile ductile iron QT400-18AL [J]. Foundry Journal Agency, 2012, 61(8): 856–861. DOI: 10.3969/j.issn.1001-4977.2012.08.002.
    [3] 叶忠志, 张园星. 液化天然气BOG压缩机选型分析 [J]. 石油和化工设备, 2013, 16(3): 61–64. DOI: 10.3969/j.issn.1674-8980.2013.03.021.

    YE Z Z, ZHANG Y X. Selection analysis of liquefied natural gas BOG compressor [J]. Petroleum and chemical equipment, 2013, 16(3): 61–64. DOI: 10.3969/j.issn.1674-8980.2013.03.021.
    [4] 阳东升, 费珂, 何旭东, 等. “低温低应力工况”下管道材料的应用 [J]. 化工设计, 2019, 29(3): 29–31, 50. DOI: CNKI:SUN:HGSJ.0.2019-03-009.

    YANG D S, FEI K, HE X D, et al. Application of pipeline materials under "low temperature and low stress condition" [J]. Chemical engineering design, 2019, 29(3): 29–31, 50. DOI: CNKI:SUN:HGSJ.0.2019-03-009.
    [5] 张宇航, 郭兴春, 付彬国, 等. 铁素体球墨铸铁低温冲击韧性 [J]. 科学技术与工程, 2022, 22(17): 6937–6941.

    ZHANG Y H, GUO X C, FU B G, et al. Low temperature impact toughness of ferritic ductile iron [J]. Science Technology and Engineering, 2022, 22(17): 6937–6941.
    [6] 朱华明, 辛国忠, 胡苟生, 等. 铸态低温高韧性球墨铸铁QT400-18L缸体的研究及应用 [J]. 铸造技术, 2014, 35(1): 106–108. DOI: CNKI:SUN:ZZJS.0.2014-01-051.

    ZHU H M, XIN G Z, HU G S, et al. Research and application of QT400-18L cylinder block of cast ductile iron with low temperature and high toughness [J]. Foundry Technology, 2014, 35(1): 106–108. DOI: CNKI:SUN:ZZJS.0.2014-01-051.
    [7] 郭大展, 胡志忠, 胡明初. 球墨铸铁冲击断裂特性研究 [J]. 现代铸铁, 1984(1): 4–7.

    GUO D Z, HU Z Z, HU M C. Study on impact fracture characteristics of ductile iron [J]. Modern cast iron, 1984(1): 4–7.
    [8] 王强, 李雷, 桃野正. 球墨铸铁低温冲击韧性的研究 [J]. 铸造, 2010, 59(2): 193–196.

    WANG Q, LI L, TAO Y Z. Study on low temperature impact toughness of ductile iron [J]. Foundry Journal Agency, 2010, 59(2): 193–196.
    [9] BAER W, WOSSIDLO P, ABBASI B, et al. Large scale testing and statistical analysis of dynamic fracture toughness of ductile cast iron [J]. Engineering Fracture Mechanics, 2009, 76(8): 1024–1036. DOI: 10.1016/j.engfracmech.2009.01.005.
    [10] KOBAYASHI T, YAMADA S. Evaluation of static and dynamic fracture toughness in ductile cast iron [J]. Metallurgical and Materials Transactions A, 1994, 25(11): 2427–2736. DOI: 10.1016/0013-7944(88)90197-X.
    [11] CARPENTER S H, ZHU Z. Correlation of the acoustic emission and the fracture toughness of ductile nodular cast iron [J]. Journal of Materials Science, 1991, 26(8): 2057–2062. DOI: 10.1007/BF00549167.
    [12] 小林俊郎, 陶勇. 等温淬火低合金球墨铸铁断裂韧性的评价 [J]. 国外机车车辆工艺, 1988(4): 16–22 DOI: CNKI:SUN:GWJQ.0.1988-04-003.

    XIAO L J L, TAO Y. Evaluation of fracture toughness of isothermal quenching low alloy ductile iron [J]. Foreign rolling stock technology, 1988(4): 16–22. DOI: CNKI:SUN:GWJQ.0.1988-04-003.
    [13] FAN C, XU Z, HAN Y, et al. Study on mode I dynamic fracture characteristics with a mini three-point bending specimen for the split Hopkinson bar technique [J]. International Journal of Impact Engineering, 2023: 104635. DOI: 10.1016/j.ijimpeng.2023.104635.
    [14] 范昌增, 许泽建, 何晓东, 等. 加载速率对40Cr钢Ⅱ型动态断裂特性的影响 [J]. 爆炸与冲击, 2021, 41(8): 083101. DOI: 10.11883/bzycj-2021-0029.

    FAN C Z, XU Z J, HE X D, et al. Effect of loading rate on the modeⅡ dynamic fracture characteristics of 40Cr steel [J]. Explosion and Shock Waves, 2021, 41(8): 083101. DOI: 10.11883/bzycj-2021-0029.
    [15] 王自强, 陈少华. 高等断裂力学 [M]. 第1版. 北京: 科学出版社, 2009: 24–26.
    [16] STANDARD A. 1990 Annual book of ASTM standards ASTM: E399-90 [R]. 2002: 13–15.
    [17] PANDOURIA A K, TIWARI V. Investigations into the static and dynamic fracture initiation and propagation toughness of AA2014-T6 incorporating temperatures effects [J]. Engineering Fracture Mechanics, 2023, 281: 109136. DOI: 10.1016/j.engfracmech.2023.109136.
    [18] 高民强. V法铸造制备高强度高韧性球墨铸铁缸套的研究 [D]. 沈阳: 沈阳工业大学, 2016: 22–29.
    [19] GB/T 9441-2021, 球墨铸铁金相检验 [S]. 北京: 中国标准出版社, 2021.
    [20] LEE S-C, HSU C-H, FENG H-P, et al. Influence of casting size and graphite nodule refinement on fracture toughness of austempered ductile iron [J]. Metallurgical and Materials Transactions A, 1998, 29(10): 2511–2521. DOI: 10.1007/s11661-998-0223-x.
    [21] MOTTITSCHKA T, PUSCH G, BIERMANN H, et al. Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT [J]. 2012, 103(1): 87–96. DOI: 10.3139/146.110636.
    [22] NILSSON K-F, BLAGOEVA D, MORETTO P. An experimental and numerical analysis to correlate variation in ductility to defects and microstructure in ductile cast iron components [J]. Engineering Fracture Mechanics, 2006, 73(9): 1133–57. DOI: 10.1016/j.engfracmech.2005.12.005.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  27
  • PDF下载量:  875
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 修回日期:  2024-03-21
  • 网络出版日期:  2024-03-26

目录

    /

    返回文章
    返回