剪切增稠液填充蜂窝夹芯板的低速冲击响应

李雨薇 易昶成 刘志芳 雷建银 李世强

李雨薇, 易昶成, 刘志芳, 雷建银, 李世强. 剪切增稠液填充蜂窝夹芯板的低速冲击响应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0095
引用本文: 李雨薇, 易昶成, 刘志芳, 雷建银, 李世强. 剪切增稠液填充蜂窝夹芯板的低速冲击响应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0095
LI Yuwei, YI Changcheng, LIU Zhifang, LEI Jianyin, LI Shiqiang. Low-velocity impact responses of shear-thickening fluid-filled honeycomb sandwich structures[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0095
Citation: LI Yuwei, YI Changcheng, LIU Zhifang, LEI Jianyin, LI Shiqiang. Low-velocity impact responses of shear-thickening fluid-filled honeycomb sandwich structures[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0095

剪切增稠液填充蜂窝夹芯板的低速冲击响应

doi: 10.11883/bzycj-2024-0095
基金项目: 国家自然科学基金(12072219, 12272254);山西省自然科学研究面上项目(202203021211170);海安太原理工大学先进制造与智能装备产业研究院开放研发项目(2023HA-TYUTKFYF016);山西省科技创新人才团队(领军)专项资助(202204051002006)
详细信息
    作者简介:

    李雨薇(1999- ),女,硕士研究生,2250521893@qq.com

    通讯作者:

    李世强(1986- ),男,博士,副教授, lishiqiang@tyut.edu.cn

  • 中图分类号: O347.3

Low-velocity impact responses of shear-thickening fluid-filled honeycomb sandwich structures

  • 摘要: 将气相二氧化硅颗粒与聚乙二醇溶液混合制备的剪切增稠液(shear-thickening fluid, STF)填充到蜂窝芯层中,制成了STF填充蜂窝夹芯板。通过落锤冲击实验,研究了冲击速度(1.0、1.5、2.0 m/s)、蜂窝孔径(2.0、2.5、3.0 mm)和壁厚(0.04、0.06、0.08 mm)对夹芯板力学性能的影响。利用数字图像相关技术测量了结构的应变历史和后面板挠度场的分布情况,探讨了结构的低速冲击响应过程。实验结果表明,在低速冲击下,未填充STF蜂窝夹芯板的变形模式为后面板中心区域凸起变形,周围区域有明显鼓包变形;填充STF蜂窝夹芯板的变形模式为后面板凸起变形且局部凸起区域较大,周围无鼓包产生。STF的剪切增稠效应可以增加参与能量吸收的蜂窝单元,扩大结构的局部变形区域,减小结构的后面板挠度。提高冲击速度、增大蜂窝孔径或者减小壁厚,都更有利于STF的剪切增稠效应。
  • 图  1  实验设置

    Figure  1.  Experimental preparation

    图  2  消除气泡前后的蜂窝芯层以及成型的试件

    Figure  2.  Honeycomb core layers before and after eliminating air bubbles and a molded specimen

    图  3  剪切增稠液的制备及其流变性能测试结果

    Figure  3.  Preparation of shear-thickening fluid and the testing results of its rheological properties

    图  4  STF的快速抽拉测试

    Figure  4.  Rapid extraction test of STF

    图  5  落锤冲击STF样品示意图

    Figure  5.  Schematic diagram of the impact of a drop hammer on the STF sample

    图  6  落锤以不同速度冲击STF时冲击载荷随下降位移的变化

    Figure  6.  Variation of impact force with falling displacement of the hammer impacting STF at different initial impact velocities

    图  7  不同时刻HP-STF-MS 结构在x方向上的应变分布

    Figure  7.  Strain distribution of HP-STF-MS structure in the x direction at different times

    图  8  不同时刻HP-STF-MS 结构在y方向上的应变分布

    Figure  8.  Strain distribution of HP-STF-MS structure in the y direction at different times

    图  9  蜂窝夹芯板结构的力-位移曲线

    Figure  9.  Force displacement curves of honeycomb sandwich structures

    图  10  蜂窝夹芯板结构变形模式

    Figure  10.  Distortion modes of honeycomb sandwich structures

    图  11  蜂窝夹芯板结构的低速冲击响应

    Figure  11.  Low-velocity impact response of honeycomb sandwich structures

    图  12  不同蜂窝孔径结构力-位移曲线

    Figure  12.  Force-displacement curves of different honeycomb aperture structures

    图  13  不同蜂窝孔径结构的剖面

    Figure  13.  Profiles of different honeycomb aperture structures

    图  14  不同蜂窝孔径结构的后面板挠度

    Figure  14.  Rear panel deflection of different honeycomb aperture structures

    图  15  DIC计算的变形云图

    Figure  15.  Deformation cloud diagram calculated by DIC

    图  16  不同蜂窝壁厚结构力-位移曲线

    Figure  16.  Force-displacement curves of structures with different honeycomb wall thicknesses

    图  17  不同蜂窝壁厚结构剖面

    Figure  17.  Profiles of structures with different honeycomb wall thicknesses

    图  18  不同蜂窝壁厚结构的后面板挠度

    Figure  18.  Rear panel deflection of structures with different honeycomb wall thicknesses

    图  19  DIC计算的变形云图

    Figure  19.  Deformation cloud diagram calculated by DIC

    表  1  结构部件材料的具体参数

    Table  1.   Specific parameters of structural component materials

    结构部件 材料类型 密度/(kg·m−3) 弹性模量/GPa 泊松比 屈服强度/MPa
    面板 铝合金A5052 2700 70 0.3 325
    蜂窝芯层 铝合金1350-H19 2680 69 0.3 165
    下载: 导出CSV

    表  2  落锤以不同速度对STF的冲击结果

    Table  2.   Impact results of a drop hammer on STF at different impact velocities

    速度/(m·s−1)冲击载荷峰值/N位移峰值/mm吸能/J
    0.1124.252.23.7
    0.2182.060.04.9
    0.3207.850.74.3
    0.4232.656.54.9
    0.5291.955.15.2
    0.6437.048.75.1
    0.7658.943.04.9
    0.8874.339.65.2
    0.91135.036.05.3
    下载: 导出CSV
  • [1] 潘腾, 卞晓兵, 袁名正, 等. 爆炸冲击波作用下聚氨酯-半球夹芯结构的动态响应 [J]. 兵工学报, 2023, 44(12): 3580–3589. DOI: 10.12382/bgxb.2023.0645.

    PAN T, BIAN X B, YUAN M Z, et al. Dynamic response of polyurethane-hemisphere sandwich structure under action of explosive shock wave [J]. Acta Armamentarii, 2023, 44(12): 3580–3589. DOI: 10.12382/bgxb.2023.0645.
    [2] HOSUR M V, MOHAMMED A A, JEELANI S. Processing of nanoclay filled sandwich composites and their response to impact loading [J]. Journal of Reinforced Plastics and Composites, 2008, 27(8): 797–818. DOI: 10.1177/0731684407084664.
    [3] 陆振乾, 许玥, 孙宝忠. 剪切增稠液及其在抗冲击缓冲方面研究进展 [J]. 振动与冲击, 2019, 38(17): 128–136, 171. DOI: 10.13465/j.cnki.jvs.2019.17.017.

    LU Z Q, XU Y, SUN B Z. Progress in shear thickening fluid study and its application in anti-impact and cushion areas [J]. Journal of Vibration and Shock, 2019, 38(17): 128–136, 171. DOI: 10.13465/j.cnki.jvs.2019.17.017.
    [4] 张朴, 王卓, 孔祥韶, 等. 剪切增稠液体液舱侵彻实验 [J]. 爆炸与冲击, 2021, 41(4): 043301. DOI: 10.11883/bzycj-2020-0143.

    ZHANG P, WANG Z, KONG X S, et al. Experimental study on a cabin filled with shear-thickening fluid penetrated by projectiles [J]. Explosion and Shock Waves, 2021, 41(4): 043301. DOI: 10.11883/bzycj-2020-0143.
    [5] HOFFMAN R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions: Ⅰ. observation of a flow instability [J]. Transactions of the Society of Rheology, 1972, 16(1): 155–173. DOI: 10.1122/1.549250.
    [6] BRADY J F, BOSSIS G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation [J]. Journal of Fluid Mechanics, 1985, 155: 105–129. DOI: 10.1017/S0022112085001732.
    [7] BROWN E, JAEGER H M. The role of dilation and confining stresses in shear thickening of dense suspensions [J]. Journal of Rheology, 2012, 56(4): 875–923. DOI: 10.1122/1.4709423.
    [8] SELVER E. Impact and damage tolerance of shear thickening fluids-impregnated carbon and glass fabric composites [J]. Journal of Reinforced Plastics and Composites, 2019, 38(14): 669–688. DOI: 10.1177/0731684419842648.
    [9] BAJYA M, MAJUMDAR A, BUTOLA B S, et al. Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid [J]. Composites Part B: Engineering, 2020, 183: 107721. DOI: 10.1016/j.compositesb.2019.107721.
    [10] GÜRGEN S, SOFUOĞLU M A. Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes [J]. Composite Structures, 2019, 226: 111236. DOI: 10.1016/j.compstruct.2019.111236.
    [11] NEAGU R C, BOURBAN P E, MÅNSON J A E. Micromechanics and damping properties of composites integrating shear thickening fluids [J]. Composites Science and Technology, 2009, 69(3/4): 515–522. DOI: 10.1016/j.compscitech.2008.11.019.
    [12] WARREN J, COLE M, OFFENBERGER S, et al. Hypervelocity impacts on honeycomb core sandwich panels filled with shear thickening fluid [J]. International Journal of Impact Engineering, 2021, 150: 103803. DOI: 10.1016/j.ijimpeng.2020.103803.
    [13] LAM L, CHEN W S, HAO H, et al. Dynamic crushing performance of bio-inspired sandwich structures with beetle forewing cores [J]. International Journal of Impact Engineering, 2023, 173: 104456. DOI: 10.1016/j.ijimpeng.2022.104456.
    [14] FU K K, WANG H J, CHANG L, et al. Low-velocity impact behaviour of a shear thickening fluid (STF) and STF-filled sandwich composite panels [J]. Composites Science and Technology, 2018, 165: 74–83. DOI: 10.1016/j.compscitech.2018.06.013.
    [15] LIN G J, LI J Q, LI F, et al. Low-velocity impact response of sandwich composite panels with shear thickening gel filled honeycomb cores [J]. Composites Communications, 2022, 32: 101136. DOI: 10.1016/j.coco.2022.101136.
    [16] WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions [J]. Physics Today, 2009, 62(10): 27–32. DOI: 10.1063/1.3248476.
    [17] 尹根, 姚松, 刘凯, 等. 低速冲击条件下剪切增稠液力学特性的试验和数值仿真研究 [J]. 中南大学学报(自然科学版), 2021, 52(4): 1327–1336. DOI: 10.11817/j.issn.1672-7207.2021.04.029.

    YIN G, YAO S, LIU K, et al. Experimental and numerical simulation of mechanical properties of shear thickening fluid during low velocity impact [J]. Journal of Central South University (Science and Technology), 2021, 52(4): 1327–1336. DOI: 10.11817/j.issn.1672-7207.2021.04.029.
    [18] GALINDO-ROSALES F J, RUBIO-HERNÁNDEZ F J, SEVILLA A. An apparent viscosity function for shear thickening fluids [J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(5/6): 321–325. DOI: 10.1016/j.jnnfm.2011.01.001.
    [19] LIU H Q, ZHU H X, FU K K, et al. High-impact resistant hybrid sandwich panel filled with shear thickening fluid [J]. Composite Structures, 2022, 284: 115208. DOI: 10.1016/j.compstruct.2022.115208.
    [20] HU Q F, LU G X, HAMEED N, et al. Dynamic compressive behaviour of shear thickening fluid-filled honeycomb [J]. International Journal of Mechanical Sciences, 2022, 229: 107493. DOI: 10.1016/j.ijmecsci.2022.107493.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  35
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-06-29
  • 网络出版日期:  2024-07-03

目录

    /

    返回文章
    返回