• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

瓦斯爆炸超压和冲击气流速度衰减模型

程磊 王蒙 景国勋 张俊展

程磊, 王蒙, 景国勋, 张俊展. 瓦斯爆炸超压和冲击气流速度衰减模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0102
引用本文: 程磊, 王蒙, 景国勋, 张俊展. 瓦斯爆炸超压和冲击气流速度衰减模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0102
CHENG Lei, WANG Meng, JING Guoxun, ZHANG Junzhan. Gas explosion overpressure and impact airflow velocity attenuation model[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0102
Citation: CHENG Lei, WANG Meng, JING Guoxun, ZHANG Junzhan. Gas explosion overpressure and impact airflow velocity attenuation model[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0102

瓦斯爆炸超压和冲击气流速度衰减模型

doi: 10.11883/bzycj-2024-0102
基金项目: 国家自然科学基金—河南联合基金重点资助项目(U1904210);
详细信息
    作者简介:

    程 磊(1973- ),男,博士,教授,chengl@hpu.edu.cn

    通讯作者:

    王 蒙(1999- ),女,硕士,3374889736@qq.com

  • 中图分类号: O389

Gas explosion overpressure and impact airflow velocity attenuation model

  • 摘要: 为降低瓦斯爆炸对煤矿作业人员和煤炭安全开采的巨大威胁,对巷道中不同体积的瓦斯/空气混合气体爆炸超压和冲击气流速度随传播距离衰减的规律进行了深入研究。首先,根据量纲分析法和能量相似律,综合考虑巷道中瓦斯爆炸超压、冲击气流速度随传播距离衰减的影响因素,建立了超压和冲击气流速度随传播距离衰减的无量纲公式。其次,对大尺寸巷道中的实验数据进行回归分析,得到了超压、冲击气流速度的衰减模型及二者之间的关系式。最后,对所建立的衰减模型和关系式进行验证。结果表明:混合气体能量、气体积聚量、测点距离、水力直径和巷道截面积是超压、冲击气流速度衰减的主要影响因素;超压、冲击气流速度均与混合气体聚积量正相关,起始超压和冲击气流速度越大,衰减越迅速;衰减模型理论值与试验值的相对误差及关系式理论值与试验值的相对误差均控制在约10%,数据整体吻合度较高,验证了其可靠性,能够更简洁直观的描述瓦斯爆炸传播规律,实现对超压、气流速度的快速计算。
  • 图  1  不同混合气体体积下超压衰减模型的理论和试验数据对比

    Figure  1.  Comparison of overpressure for the gas explosion by overpressure propagation attenuation model and experimental data at different gas mixture volumes

    图  2  不同混合气体体积下气流速度衰减模型的理论和试验数据对比

    Figure  2.  Comparison of airflow velocity for the gas explosion by airflow velocity attenuation model and experimental data at different gas mixture volumes

    图  3  不同混合气体体积下根据超压-气流速度关系式得到的超压理论值和试验数据对比

    Figure  3.  Comparison of overpressure for the gas explosion by overpressure-airflow velocity relation and experimental data at different gas mixture volumes

    图  4  不同混合气体体积下根据超压-气流速度关系式得到的气流速度理论值和试验数据对比

    Figure  4.  Comparison of airflow velocity for the gas explosion by overpressure-airflow velocity relation and experimental data at different gas mixture volumes

    表  1  爆炸超压随距离衰减的影响因素

    Table  1.   Influencing factors of explosion overpressure attenuation with distance

    影响因素 量纲
    超压p L−1T−2M1
    爆炸混合物能量E L2T−2M1
    混合气体积聚量V L3
    巷道截面积S L2
    水力直径dB L
    巷道粗糙系数β /
    测点与爆源距离R L
    空气初始大气压p0 L−1T−2M1
    空气初始大气密度ρ0 L−3M1
     注:[L]、[T]、[M]分别为长度、时间和质量3个基本量纲。
    下载: 导出CSV

    表  2  瓦斯爆炸超压原始试验数据

    Table  2.   The original experiment data of overpressure in gas explosion

    距离R/m 超压/kPa
    100 m3 200 m3
    试验1 试验2 试验3 试验1 试验2 试验3
    30 171 167 159 295 324 308
    40 180 168 161 288 311 285
    60 136 163 163 286 302 265
    80 167 145 130 269 284 264
    100 151 137 125 261 270 255
    120 139 131 138 258 261 248
    140 128 129 130 250 256 243
    160 118 126 121 237 249 242
    下载: 导出CSV

    表  3  瓦斯爆炸气流速度原始试验数据

    Table  3.   The original experiment data of impact airflow in gas explosion

    距离R/m 气流速度/(m∙s−1)
    100 m3 200 m3
    试验1 试验2 试验3 试验1 试验2 试验3
    30 292.6 298.0 294.9 491.0 450.6 427.9
    40 236.2 258.1 287.8 377.9 361.5 309.6
    60 203.0 239.1 297.6 270.9 268.8 299.7
    80 194.5 198.0 173.6 239.4 246.2 257.3
    100 174.6 166.2 164.6 219.7 222.2 227.5
    120 173.2 154.2 141.5 202.1 219.7 215.0
    140 149.1 130.1 144.2 182.3 202.1 108.8
    160 125.0 115.2 134.6 174.5 179.7 166.0
    下载: 导出CSV
  • [1] 徐景德. 矿井瓦斯爆炸冲击波传播规律及影响因素的研究 [D]. 北京: 中国矿业大学, 2002: 31–33.

    XU J D. The study on gas explosion wave propagation law and affected factors in mine [D]. Beijing, China: China University of Mining and Technology, 2003: 31–33.
    [2] 朱云飞, 王德明, 赵安宁, 等. 尺度直巷中瓦斯爆炸传播规律及影响因素研究 [J]. 煤炭技术, 2023, 42(9): 169–172. DOI: 10.13301/j.cnki.ct.2023.09.033.

    ZHU Y F, WANG D M, ZHAO A N, et al. Investigation on Propagation and Influence Factors of Gas Explosions in Large-scale Straight Tunnels [J]. Coal Technology, 2023, 42(9): 169–172. DOI: 10.13301/j.cnki.ct.2023.09.033.
    [3] 罗振敏, 刘利涛, 王涛, 等. C2H6、C2H4、CO与H2对甲烷爆炸压力及动力学特性影响 [J]. 工程科学学报, 2022, 44(3): 339–347. DOI: 10.13374/j.issn2095-9389.2020.10.22.002.

    LUO Z M, LIU L T, WANG T, et al. Effect of C2H6, C2H4, CO and H2 on the explosion pressure and kinetic characteristics of methane [J]. Chinese Journal of Engineering Science, 2022, 44(3): 339–347. DOI: 10.13374/j.issn2095-9389.2020.10.22.002.
    [4] 高智慧, 李雨成, 张欢, 等. 瓦斯爆炸在角联通风管网中的传播特性研究 [J]. 中国安全生产科学技术, 2022, 18(8): 72–78. DOI: 10.11731/j.issn.1673-193x.2022.08.011.

    GAO Z H, LI Y C, Zhang H, et al. Study on propagation characteristics of gas explosion in diagonal ventilation pipe network [J]. China Work Safety Science and Technology, 2022, 18(8): 72–78. DOI: 10.11731/j.issn.1673-193x.2022.08.011.
    [5] XU Q M, CHEN G H, SU S, et al. Prediction of venting gas explosion overpressure based on a combination of explosive theory and machine learning [J]. Expert Systems With Applications, 2023, 234. DOI: 10.1016/j.eswa.2023.121044.
    [6] 程磊, 景国勋, 杨书召. 煤尘爆炸冲击波传播规律及造成的伤害分区研究 [J]. 河南理工大学学报(自然科学版), 2011, 30(3): 257–261. DOI: 10.16186/j.cnki.1673-9787.2011.03.020.

    CHENG L, JING G X, YANG S Z. Research on spreading law and damage area of shock wave of coal dust explosion [J]. Journal of Henan Polytechnic University (Natural Science Edition), 2011, 30(3): 257–261. DOI: 10.16186/j.cnki.1673-9787.2011.03.020.
    [7] 曲志明, 周心权, 王海燕, 等. 瓦斯爆炸冲击波超压的衰减规律 [J]. 煤炭学报, 2008(4): 410–414. DOI: 10.3321/j.issn:0253-9993.2008.04.012.

    QU Z M, ZHOU X Q , WANG H Y , et al. Overpressure attenuation of shock wave during gas explosion [J]. Journal of China Coal Society, 2008(4): 410–414. DOI: 10.3321/j.issn:0253-9993.2008.04.012.
    [8] JIANG B, TANG M, SHI S. Multiparameter acceleration characteristics of premixed methane/air explosion in a semi-confined pipe[J]. Journal of Loss Prevention in the Process Industries, 2017, 49. DOI: 10.1016/j.jlp.2017.06.012.
    [9] 刘佳佳, 张扬, 张翔, 等. Y型通风采煤工作面瓦斯爆炸传播规律模拟研究 [J]. 爆炸与冲击, 2023, 43(8): 182–194. DOI: 10.11883/bzycj-2023-0018.

    LIU J J, ZHANG Y, ZHANG X, et al. Simulation study on propagation characteristics of gas explosion in Y-shaped ventilated coal face [J]. Explosion and Shock Waves, 2023, 43(8): 182–194. DOI: 10.11883/bzycj-2023-0018.
    [10] 张强, 孙玉荣, 王晓勇, 等. 煤与瓦斯突出冲击波传播规律的研究 [J]. 矿业安全与环保, 2007(5): 21–23. DOI: 10.3969/j.issn.1008-4495.2007.05.008.

    ZHANG Q, SUN Y R, WANG X Y, et al. Study on propagation law of shock wave from coal and gas outburst [J]. Mining Safety and Environmental Protection, 2007(5): 21–23. DOI: 10.3969/j.issn.1008-4495.2007.05.008.
    [11] 程五一, 刘晓宇, 王魁军, 李祥. 煤与瓦斯突出冲击波阵面传播规律的研究 [J]. 煤炭学报, 2004(1): 57–60. DOI: 10.3321/j.issn:0253-9993.2004.01.013.

    CHENG W Y, LIU X Y, WANG K J, LI X. Study on regulation about shock-wave-front propagating for coal and gas outburst [J]. Journal of China Coal Society, 2004(1): 57–60. DOI: 10.3321/j.issn:0253-9993.2004.01.013.
    [12] BAKER W E. Engineer Design Handbook: Explosion In Air Part One[M]. JIANG KE, translate, Beijing, 1982.
    [13] J HENRYCH. The dynamic of explosion and its use[M]. XIONG Jian-guo, translated. Beijing: Science Press, 1987.
    [14] SADOVSKYI M A. Mechanical Action Of Air Shock Waves Of Explosion, Based On Experimental Data[M]. Moscow: Izd Akad Nauk SSSR, 1952: 1–2.
    [15] 李宝岩, 戴智涵. 大当量TNT自由空气爆炸数值模拟研究[C]. 第26届全国结构工程学术会议, 2017: 96–100.

    LI B Y, DAI Z H. Numerical Simulation of large equivalent TNT free Air Explosion [C]. The 26th National Conference on Structural Engineering, 2017: 96–100.
    [16] 姚成宝, 王宏亮, 张柏华, 等. TNT空中爆炸冲击波传播数值模拟及数值影响因素分析 [J]. 现代应用物理, 2014, 5(1): 39–44. DOI: 10.3969/j.issn.2095-6223.2014.01.008.

    YAO C B, WANG H L, ZHANG B H, et al. Numerical simulation of shock wave propagation and analysis of numerical influencing factors of TNT aerial explosion [J]. Modern Applied Physics, 2014, 5(1): 39–44. DOI: 10.3969/j.issn.2095-6223.2014.01.008.
    [17] DANIEL F G, EMILIAN G, IOAN V N, et al. Release of overpressures in computational simulations of air-methane explosions[J]. MATEC Web of Conferences, 2022, 373. DOI: 10.1051/matecconf/202237300043.
    [18] 许浪. 瓦斯爆炸冲击波衰减规律及安全距离研究 [D]. 徐州: 中国矿业大学, 2015.

    XU L. Study on attenuation law and safety distance of shock wave of Gas explosion [D]. Xuzhou, China: China University of Mining and Technology, 2015.
    [19] 杨书召, 景国勋, 贾智伟. 矿井瓦斯爆炸冲击气流伤害研究 [J]. 煤炭学报, 2009, 34(10): 1354–1358. DOI: 10.3321/j.issn:0253-9993.2009.10.011.

    YANG S Z, JING G X, JIA Z W. Injury study on impact current of gas explosion in coal mine [J]. Journal of China Coal Society, 2009, 34(10): 1354–1358. DOI: 10.3321/j.issn:0253-9993.2009.10.011.
    [20] 吴爱军, 承林. 煤与瓦斯突出冲击波传播规律研究 [J]. 中国矿业大学学报, 2011, 40(6): 852–857.

    WU A J, CHENG L. Research on propagation of shock waves from coal and gas outburst [J]. Journal of China University of Mining and Technology, 2011, 40(6): 852–857.
    [21] 王海燕, 曹涛, 周心权, 等. 煤矿瓦斯爆炸冲击波衰减规律研究与应用 [J]. 煤炭学报, 2009, 34(6): 778–782. DOI: 10.3321/j.issn:0253-9993.2009.06.012.

    WANG H Y, CAO T, ZHOU X Q, et al. Research and application of attenuation law about gas explosion shock wave in coal mine [J]. Journal of China Coal Society, 2009, 34(6): 778–782. DOI: 10.3321/j.issn:0253-9993.2009.06.012.
    [22] 张景松, 杨春敏. 流体力学: 流体力学与流体机械 [M]. 徐州: 中国矿业大学出版社, 2010.
    [23] 李贺龙, 王浩, 诸洲, 等. 基于量纲分析的戈壁地区爆破振动衰减模型 [J]. 科学技术与工程, 2023, 23(28): 11947–11953. DOI: 10.12404/j.issn.1671-1815.2023.23.28.11947.

    LI H L, WANG H, ZHU Z, et al. Blasting vibration attention model of in Gobi region based on dimensional analysis [J]. Science Technology and Engineering, 2023, 23(28): 11947–11953. DOI: 10.12404/j.issn.1671-1815.2023.23.28.11947.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  55
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-06-07
  • 网络出版日期:  2024-06-12

目录

    /

    返回文章
    返回