针对个体防护的冲击波检测评估技术

胡勇 马天 王俊龙 杜智博 黄献聪 嵇海宁 魏慧琳 柳占立 康越

胡勇, 马天, 王俊龙, 杜智博, 黄献聪, 嵇海宁, 魏慧琳, 柳占立, 康越. 针对个体防护的冲击波检测评估技术[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0118
引用本文: 胡勇, 马天, 王俊龙, 杜智博, 黄献聪, 嵇海宁, 魏慧琳, 柳占立, 康越. 针对个体防护的冲击波检测评估技术[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0118
HU Yong, MA Tian, WANG Junlong, DU Zhibo, HUANG Xiancong, JI Haining, WEI Huilin, LIU Zhanli, KANG Yue. Shock wave detection and evaluation techniques for individual protection[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0118
Citation: HU Yong, MA Tian, WANG Junlong, DU Zhibo, HUANG Xiancong, JI Haining, WEI Huilin, LIU Zhanli, KANG Yue. Shock wave detection and evaluation techniques for individual protection[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0118

针对个体防护的冲击波检测评估技术

doi: 10.11883/bzycj-2024-0118
基金项目: 国家自然科学基金(62103437)
详细信息
    作者简介:

    胡 勇(1989- ),男,博士研究生,助理研究员,huyong21@mails.tsinghua.edu.cn

    通讯作者:

    康 越(1989- ),男,博士,高级工程师,goodluckky@163.com

  • 中图分类号: O384

Shock wave detection and evaluation techniques for individual protection

  • 摘要: 随着新型弹药和大口径重炮的大规模使用,由爆炸冲击所致非接触式杀伤模式正在快速替代原先由子弹、破片等造成的直接接触性杀伤,其杀伤威力、精度等对作战人员和装备更具威胁。本文中将从介绍爆炸冲击波典型测试环境和方法入手,通过综述爆炸冲击监测传感技术和爆炸冲击流场重构技术分析总结发展趋势,最后对国外典型便携式爆炸冲击波传感系统应用情况进行了简单介绍,为我国相关产品研发提供借鉴经验。冲击波压力传感器向着小型化、标准化、集成化和智能化研究方向发展,同时大力发展新型传感技术研究。以计算流体力学数据和实验数据为基础,在爆炸波信号处理、流场重构中引入人工智能技术;开发具有我国自主知识产权的便携式爆炸冲击检测评估系统,为极端环境下特殊行业从业人员的防护、救治提供快速分类和快速诊疗依据。
  • 图  1  不同结构传感器示意图

    Figure  1.  Schematic diagram of different structures of sensors

    图  2  几种典型的EFPI型光纤传感器结构示意图[128]

    Figure  2.  Schematic structures of several typical EFPI-type fiber optic sensors[128]

    图  3  5 psi传感器实测冲击信号及其重构信号时域图(1 psi=6.9 kPa)[169]

    Figure  3.  Time-domain plot of the measured shock signal of the 5 psi sensor and its reconstructed signal (1 psi = 6.9 kPa) [169]

    图  4  数模融合的实时框架流程图[204]

    Figure  4.  Real-time framework diagram for numerical model fusion[204]

    表  1  几种测试环境的优缺点对比

    Table  1.   Comparison of advantages and disadvantages of several test environments

    测试环境 优点 缺点
    自由场实爆环境 可真实还原实际爆炸场景;
    适合大型(全尺寸)模型测试;
    可开展不同当量测试试验
    受天气和环境因素影响较大;
    数据采集影响因素多;
    试验成本较高
    激波管测试环境 测试环境可控,影响较小;
    试验安全性较高;
    试验成本相对较低
    空间受限,无法开展全尺寸测试;
    后期维护成本高;
    无法完全模拟实际爆炸环境
    机械碰撞模拟冲击系统 试验设备投入小,成本低 载荷谱控制不理想,调试周期较长;
    被试样品尺寸较小
    精确可控模拟冲击系统 试验重复性、可控性较好;
    在一定程度上,消除了采集的
    “寄生”效应。
    /
    爆破室 测试环境安全;
    可承载多次爆破或单次极端爆破
    测试时由于壁面反射作用,导致产生爆炸冲击叠加效应;
    不同位置爆炸冲击波波形并不均匀
    下载: 导出CSV

    表  2  几种典型爆炸冲击波超压传感器性能对比

    Table  2.   Comparison of the performances of several typical explosive shock wave overpressure sensors

    品牌/公司 型号 测量范围/psi 灵敏度/(mV∙psi−1 分辨率/mpsi
    PCB 105C系列 100/1000/5000 50/5/1 0.005/20/100
    113B 系列 50/100/200/500(1000) 100/50/25/10 1/1/1/2
    137B 系列 50/250/500/1000 100/20/10/1 10/0.7/1/8.5
    Kistler 601CBA 22/50/100/200/500/1000/3626 230/99/49/25/9.9/4.9/1.4 /
    扬州科动 KD2004L系列 145/72.5/29/7.25/1.45 0.345/0.69/1.725/6.9/34.5 /
    品牌/公司 型号 谐振频率/kHz 上升时间/µs 非线性度/% 质量/g 温度范围/℃
    PCB 105C系列 ≥ 250 ≤ 2 ≤ 2 4.3~11.6 −73~+121
    113B 系列 ≥ 500 ≤ 1 ≤ 1 4.5~6 −73~+135
    137B 系列 ≥ 400 ≤ 6.5 ≤ 1 / −73~+135
    Kistler 601CBA >215 ≤ 1.4 ≤ 1 3.6 −55~+120
    扬州科动 KD2004L系列 ≥ 200 ≤ 2 ≤ 1 14 −40~+120
     注:1 psi=6.9 kPa
    下载: 导出CSV

    表  3  几种主要加速度传感器性能对比分析

    Table  3.   Comparative analysis of the performance of several major acceleration sensors

    类型 优点 缺点
    压阻式加速度传感器 输出线性好;
    制作简单,造价低;
    信号处理电路简单
    灵敏度较低;
    受温度影响较大
    电压式加速度传感器 响应速度快
    线性度较好
    低频特性欠佳,不宜做静态加速度检测;
    制作工艺复杂,与集成电路兼容性欠佳
    电容式加速度传感器 功耗低;
    灵敏度高;
    温度漂移小
    易受电磁干扰;
    接口电路较复杂;
    输出/输入间非线性度欠佳
    下载: 导出CSV

    表  4  几种测试方法优缺点对比

    Table  4.   Comparison of advantages and disadvantages of several test methods

    测试方法 优点 缺点
    非电测法 等效靶法 成本较低、布放简单,可定性/定量评估爆炸威力 定量测试结果不准确,不能准确测得冲击波超压峰值和冲击波随时间变化的曲线信息
    光学测量法 记录直观、实现爆炸冲击波波阵面及流场运动的可视化
    生物实验法 测试结果直观、说服力强 受社会伦理严格限制,专业性较强
    电测法 引线电测法 可完整记录冲击波的传播过程,还原冲击波流场信息 现场安装、调试和校准步骤繁琐,且易干扰,易形成测试信号叠加或寄生输出问题
    存储测试法 不需引线、布置方便、抗干扰能力强 设备昂贵,容易丢失测试信息
    下载: 导出CSV
  • [1] TAYLOR P A, FORD C C. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury [J]. Journal of Biomechanical Engineering, 2009, 131(6): 061007. DOI: 10.1115/1.3118765.
    [2] REGASA L E, AGIMI Y, STOUT K C. Traumatic brain injury following military deployment: evaluation of diagnosis and cause of injury [J]. Journal of Head Trauma Rehabilitation, 2019, 34(1): 21–29. DOI: 10.1097/HTR.0000000000000417.
    [3] GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224.
    [4] MEDIAVILLA VARAS J, PHILIPPENS M, MEIJER S R, et al. Physics of IED blast shock tube simulations for mTBI research [J]. Frontiers in Neurology, 2011, 2: 58. DOI: 10.3389/fneur.2011.00058.
    [5] TAYLOR P A, LUDWIGSEN J S, FORD C C, et al. Verification and validation of simulation framework for analysis of traumatic brain injury: SAND-2018-7372 [R]. Albuquerque: Sandia National Laboratories, 2018. DOI: 10.2172/1529058.
    [6] ENGEL C C, HOCH E, SIMMONS M, et al. The neurological effects of repeated exposure to military occupational blast: implications for prevention and health [C]//Proceedings, Findings, and Expert Recommendations from the Seventh Department of Defense State-of-the-Science Meeting. Santa Monica: RAND Corporation, 2019.
    [7] TAN X G, MATIC P. Simulation of cumulative exposure statistics for blast pressure transmission into the brain [J]. Military Medicine, 2020, 185(S1): 214–226. DOI: 10.1093/milmed/usz308.
    [8] 陈青青. 爆炸自由场冲击波测试系统设计 [D]. 太原: 中北大学, 2017.
    [9] SACHS R G. The Dependence of blast on ambient pressure and temperature: BRL Report No. 466 [R]. Aberdeen: Ballistic Research Laboratory, 1944.
    [10] HUANG X Y, CHANG L J, ZHAO H, et al. Study on craniocerebral dynamics response and helmet protective performance under the blast waves [J]. Materials & Design, 2022, 224: 111408. DOI: 10.1016/j.matdes.2022.111408.
    [11] RODRÍGUEZ-MILLÁN M, TAN L B, TSE K M, et al. Effect of full helmet systems on human head responses under blast loading [J]. Materials & Design, 2017, 117: 58–71. DOI: 10.1016/j.matdes.2016.12.081.
    [12] NYEIN M K, JASON A M, YU L, et al. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(48): 20703–20708. DOI: 10.1073/pnas.1014786107.
    [13] MEJÍA-ALVAREZ R, KERWIN J, VIDHATE S, et al. Large cross-section blast chamber: design and experimental characterization [J]. Measurement Science and Technology, 2021, 32(11): 115902. DOI: 10.1088/1361-6501/ac12fc.
    [14] OP ‘T EYNDE J, YU A W, ECKERSLEY C P, et al. Primary blast wave protection in combat helmet design: a historical comparison between present day and world war I [J]. Plos One, 2020, 15(2): e0228802. DOI: 10.1371/journal.pone.0228802.
    [15] RENEER D V, HISEL R D, HOFFMAN J M, et al. A multi-mode shock tube for investigation of blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2011, 28(1): 95–104. DOI: 10.1089/neu.2010.1513.
    [16] MAACH S, VON ROSEN B, MCCAULEY L, et al. Comparison of Hybrid III head response to shock tube and explosive blast loading [C]//Proceedings of International Research Council on Biomechanics of Injury. Antwerp: IRCOBI, 2017.
    [17] RAPO M A, BAUMER T, CHAN P C, et al. Reducing the effects of blast to the head through load partitioning [C]//Proceedings of ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego: American Society of Mechanical Engineers, 2013. DOI: 10.1115/IMECE2013-63257.
    [18] “DALE” BASS C, DAVIS M, RAFAELS K, et al. A methodology for assessing blast protection in explosive ordnance disposal bomb suits [J]. International Journal of Occupational Safety and Ergonomics, 2005, 11(4): 347–361. DOI: 10.1080/10803548.2005.11076655.
    [19] 闫宏彪. 无线分布式冲击波测试研究 [D]. 太原: 中北大学, 2016.
    [20] 柴栋梁, 王文廉. 柔性传感冲击波瞬态压力测试方法 [J]. 中国测试, 2018, 44(12): 91–95. DOI: 10.11857/j.issn.1674-5124.2018.12.016.

    CHAI D L, WANG W L. Test method of transient pressure of flexible sensing shock wave [J]. China Measurement & Test, 2018, 44(12): 91–95. DOI: 10.11857/j.issn.1674-5124.2018.12.016.
    [21] 陈艳. 基于等效靶的弹药空气中爆炸威力评估方法 [D]. 长沙: 国防科技大学, 2019.
    [22] 刘丁. 冲击波超压测试系统关键技术研究 [D]. 太原: 中北大学, 2018.

    LIU D. Study on key technology of shock wave overpressure testing system [D]. Taiyuan: North University of China, 2018.
    [23] FENG K, ZHANG L Y, JIN X, et al. Biomechanical responses of the brain in swine subject to free-field blasts [J]. Frontiers in Neurology, 2016, 7: 179. DOI: 10.3389/fneur.2016.00179.
    [24] MA X T, ARAVIND A, PFISTER B J, et al. Animal models of traumatic brain injury and assessment of injury severity [J]. Molecular Neurobiology, 2019, 56(8): 5332–5345. DOI: 10.1007/s12035-018-1454-5.
    [25] RUTTER B, SONG H L, DEPALMA R G, et al. Shock wave physics as related to primary non-impact blast-induced traumatic brain injury [J]. Military Medicine, 2021, 186(S1): 601–609. DOI: 10.1093/milmed/usaa290.
    [26] OUELLET S, PHILIPPENS M. The multi-modal responses of a physical head model subjected to various blast exposure conditions [J]. Shock Waves, 2018, 28(1): 19–36. DOI: 10.1007/s00193-017-0771-3.
    [27] LIU J Y, DONG Y X, AN X Y, et al. Reaction degree of composition B explosive with multi-layered compound structure protection subjected to detonation loading [J]. Defence Technology, 2021, 17(2): 315–326. DOI: 10.1016/j.dt.2020.02.004.
    [28] ZHOU H Y, ZHANG X J, WANG X J, et al. Protection effectiveness of sacrificial cladding for near-field blast mitigation [J]. International Journal of Impact Engineering, 2022, 170: 104361. DOI: 10.1016/j.ijimpeng.2022.104361.
    [29] BANTON R, PIEHLER T, ZANDER N, et al. Experimental and numerical investigation of blast wave impact on a surrogate head model [J]. Shock Waves, 2021, 31(5): 481–498. DOI: 10.1007/s00193-021-01033-7.
    [30] BANTON R, PIEHLER T, ZANDER N, et al. Comparison of numerical simulations with experiments of blast-induced pressure wave impact on a surrogate head model [M]//KIMBERLEY J, LAMBERSON L, MATES S. Dynamic Behavior of Materials, Volume 1. Cham: Springer, 2018: 181-187. DOI: 10.1007/978-3-319-62956-8_30.
    [31] AZAR A, BHAGAVATHULA K B, HOGAN J, et al. Protective headgear attenuates forces on the inner table and pressure in the brain parenchyma during blast and impact: an experimental study using a simulant-based surrogate model of the human head [J]. Journal of Biomechanical Engineering, 2020, 142(4): 041009. DOI: 10.1115/1.4044926.
    [32] DIONNE J P, LEVINE J, MAKRIS A. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets [J]. Shock Waves, 2018, 28(1): 5–18. DOI: 10.1007/s00193-017-0737-5.
    [33] ALLEN R M, KIRKPATRICK D J, LONGBOTTOM A W, et al. Experimental and numerical study of free-field blast mitigation [J]. AIP Conference Proceedings, 2004, 706(1): 823–826. DOI: 10.1063/1.1780363.
    [34] XU S, ZHANG G, GUO J F, et al. Helmet chinstrap protective role in maxillofacial blast injury [J]. Technology and Health Care, 2021, 29(4): 735–747. DOI: 10.3233/THC-202406.
    [35] TAN X G, MATIC P. Optimizing helmet pad placement using computational predicted injury pattern to reduce mild traumatic brain injury [J]. Military Medicine, 2021, 186(S1): 592–600. DOI: 10.1093/milmed/usaa240.
    [36] TSE K M, BIN TAN L, ALI BIN SAPINGI M, et al. The role of a composite polycarbonate-aerogel face shield in protecting the human brain from blast-induced injury: a fluid–structure interaction (FSI) study [J]. Journal of Sandwich Structures & Materials, 2019, 21(7): 2484–2511. DOI: 10.1177/1099636217733369.
    [37] SUTAR S, GANPULE S. Investigation of wave propagation through head layers with focus on understanding blast wave transmission [J]. Biomechanics and Modeling in Mechanobiology, 2020, 19(3): 875–892. DOI: 10.1007/s10237-019-01256-9.
    [38] MISISTIA A, SKOTAK M, CARDENAS A, et al. Sensor orientation and other factors which increase the blast overpressure reporting errors [J]. Plos One, 2020, 15(10): e0240262. DOI: 10.1371/journal.pone.0240262.
    [39] YANG F Y, LI Z J, ZHUANG Z, et al. Evaluating the blast mitigation performance of hard/soft composite structures through field explosion experiment and numerical analysis [J]. Acta Mechanica Sinica, 2022, 38(1): 121238. DOI: 10.1007/s10409-021-09001-x.
    [40] 康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究 [J]. 爆炸与冲击, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.

    KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.
    [41] NAGARAJA S R, PRASAD J K, JAGADEESH G. Theoretical–experimental study of shock wave-assisted metal forming process using a diaphragmless shock tube [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2012, 226(12): 1534–1543. DOI: 10.1177/0954410011424808.
    [42] COLOMBO M, DI PRISCO M, MARTINELLI P. A new shock tube facility for tunnel safety [J]. Experimental Mechanics, 2011, 51(7): 1143–1154. DOI: 10.1007/s11340-010-9430-7.
    [43] 王正国, 孙立英, 杨志焕, 等. 系列生物激波管的研制与应用 [J]. 爆炸与冲击, 1993, 13(1): 77–83.

    WANG Z G, SUN L Y, YANG Z H, et al. The design production and application of a series of bio-shock tubes [J]. Explosion and Shock Waves, 1993, 13(1): 77–83.
    [44] KANG Y, WANG J L, ZHANG S Z, et al. A review of the development of shock tubes for simulating blast waves [C]//Proceedings of the 2023 IEEE 16th International Conference on Electronic Measurement & Instruments. Harbin: IEEE, 2023: 416-425. DOI: 10.1109/ICEMI59194.2023.10269910.
    [45] 韩惠霖. 激波管的发展和应用 [J]. 浙江大学学报, 1980(3): 170–190.

    HAN H L. Devlopment and application of the shock tubes [J]. Journal of Zhejiang University, 1980(3): 170–190.
    [46] NING Y L, ZHOU Y G. Shock tubes and blast injury modeling [J]. Chinese Journal of Traumatology, 2015, 18(4): 187–193. DOI: 10.1016/j.cjtee.2015.04.005.
    [47] SUNDARAMURTHY A, CHANDRA N. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube [J]. Frontiers in Neurology, 2014, 5: 253. DOI: 10.3389/fneur.2014.00253.
    [48] CELANDER H, CLEMEDSON C J, ERICSSON U A, et al. The use of a compressed air operated shock tube for physiological blast research [J]. Acta Physiologica Scandinavica, 1955, 33(1): 6–13. DOI: 10.1111/j.1748-1716.1955.tb01188.x.
    [49] KURIAKOSE M, SKOTAK M, MISISTIA A, et al. Tailoring the blast exposure conditions in the shock tube for generating pure, primary shock waves: the end plate facilitates elimination of secondary loading of the specimen [J]. Plos One, 2016, 11(9): e0161597. DOI: 10.1371/journal.pone.0161597.
    [50] NGO T D, MENDIS P A, GUPTA A, et al. Blast loading and blast effects on structures – An overview [J]. Electronic Journal of Structural Engineering, 2007(1): 76–91. DOI: 10.56748/ejse.671.
    [51] CHANDRA N, SUNDARAMURTHY A, GUPTA R K. Validation of laboratory animal and surrogate human models in primary blast injury studies [J]. Military Medicine, 2017, 182(S1): 105–113. DOI: 10.7205/MILMED-D-16-00144.
    [52] TEKALUR S A, SHUKLA A, SHIVAKUMAR K. Blast resistance of polyurea based layered composite materials [J]. Composite Structures, 2008, 84(3): 271–281. DOI: 10.1016/j.compstruct.2007.08.008.
    [53] SCHIMIZZE B, SON S F, GOEL R, et al. An experimental and numerical study of blast induced shock wave mitigation in sandwich structures [J]. Applied Acoustics, 2013, 74(1): 1–9. DOI: 10.1016/j.apacoust.2012.05.011.
    [54] KOUMLIS S, LAMBERSON L. Strain rate dependent compressive response of open cell polyurethane foam [J]. Experimental Mechanics, 2019, 59(7): 1087–1103. DOI: 10.1007/s11340-019-00521-3.
    [55] WOOD G W, PANZER M B, SHRIDHARANI J K, et al. Attenuation of blast pressure behind ballistic protective vests [J]. Injury Prevention, 2013, 19(1): 19–25. DOI: 10.1136/injuryprev-2011-040277.
    [56] SKOTAK M, ALAY E, ZHENG J Q, et al. Effective testing of personal protective equipment in blast loading conditions in shock tube: comparison of three different testing locations [J]. Plos One, 2018, 13(6): e0198968. DOI: 10.1371/journal.pone.0198968.
    [57] KOLIATSOS V E, CERNAK I, XU L Y, et al. A mouse model of blast injury to brain: Initial pathological, Neuropathological, and behavioral characterization [J]. Journal of Neuropathology & Experimental Neurology, 2011, 70(5): 399–416. DOI: 10.1097/NEN.0b013e3182189f06.
    [58] RAFAELS K, “DALE” BASS C R, SALZAR R S, et al. Survival risk assessment for primary blast exposures to the head [J]. Journal of Neurotrauma, 2011, 28(11): 2319–2328. DOI: 10.1089/neu.2009.1207.
    [59] YANG Z S, ADEREMI O A, ZHAO Q W, et al. Early Complement and fibrinolytic activation in a rat model of blast-induced multi-organ damage [J]. Military Medicine, 2019, 184(S1): 282–290. DOI: 10.1093/milmed/usy412.
    [60] 杨志焕, 王正国, 唐承功, 等. 炮口冲击波的生物效应及其对人员内脏损伤的安全限值 [J]. 振动与冲击, 1994(4): 39–45. DOI: 10.13465/j.cnki.jvs.1994.04.007.
    [61] DU Z B, LI Z J, WANG P, et al. Revealing the effect of skull deformation on intracranial pressure variation during the direct interaction between blast wave and surrogate head [J]. Annals of Biomedical Engineering, 2022, 50(9): 1038–1052. DOI: 10.1007/s10439-022-02982-5.
    [62] 蒋殿臣, 赵卓茂, 冯伟干, 等. 新型摆锤式冲击响应谱试验台波形的调试方法研究 [J]. 机械工程师, 2014(8): 98–99.
    [63] 卢红标, 周早生, 严东晋, 等. 爆炸冲击震动模拟平台的研制 [J]. 爆炸与冲击, 2005, 25(3): 276–280. DOI: 10.11883/1001-1455(2005)03-0276-05.

    LU H B, ZHOU Z S, YAN D J, et al. Development on shocking table for blast explosions [J]. Explosion and Shock Waves, 2005, 25(3): 276–280. DOI: 10.11883/1001-1455(2005)03-0276-05.
    [64] 田振强, 王冰, 蒋殿臣, 等. 新型摆锤式冲击响应谱试验台的研制 [J]. 强度与环境, 2013, 40(4): 59–64. DOI: 10.3969/j.issn.1006-3919.2013.04.011.

    TIAN Z Q, WANG B, JIANG D C, et al. Research and design of a new type pendulum hammer shock machine for shock response spectra testing [J]. Structure & Environment Engineering, 2013, 40(4): 59–64. DOI: 10.3969/j.issn.1006-3919.2013.04.011.
    [65] 毛勇建, 李玉龙. 爆炸分离冲击环境的模拟试验技术进展 [J]. 导弹与航天运载技术, 2007(4): 37–44. DOI: 10.3969/j.issn.1004-7182.2007.04.010.

    MAO Y J, LI Y L. Advances in simulation techniques of pyroshock environments [J]. Missiles and Space Vehicles, 2007(4): 37–44. DOI: 10.3969/j.issn.1004-7182.2007.04.010.
    [66] 杜建国, 谢清粮. 大型爆炸冲击震动环境模拟试验系统需求分析 [J]. 防护工程, 2018, 40(6): 23–29.

    DU J G, XIE Q L. Requirements analysis of the large experiment device for simulation of explosion shock environments [J]. Protective Engineering, 2018, 40(6): 23–29.
    [67] 成凤生. 密闭空间内爆炸冲击波压力测试及内壁超压分布研究 [D]. 南京: 南京理工大学, 2012.
    [68] 李丽萍, 孔德仁, 苏建军. 毁伤工况条件下冲击波压力电测法综述 [J]. 爆破, 2015, 32(2): 39–46. DOI: 10.3963/j.issn.1001-487X.2015.02.007.

    LI L P, KONG D R, SU J J. Review on electrometric test method of shockwave pressure on damage condition [J]. Blasting, 2015, 32(2): 39–46. DOI: 10.3963/j.issn.1001-487X.2015.02.007.
    [69] 彭丽. 基于光纤F-P传感器的水下冲击波探测系统研究 [D]. 武汉: 武汉理工大学, 2015.
    [70] 杨聪. 爆炸冲击波动态测量压电式压力传感器研究 [D]. 济南: 济南大学, 2019.
    [71] DRSTE-RP-702-103. ADA096638 Electronic measurement of airblast overpressure [S]. US Army Test and Evaluation Command Test Opeartions Procedure, 1981.
    [72] 梁頔, 马铁华, 刘一江, 等. 基于PCB压电传感器的小型冲击波存储测试系统 [J]. 电子器件, 2014, 37(1): 119–122. DOI: 10.3969/j.issn.1005-9490.2014.01.028.

    LIANG D, MA T H, LIU Y J, et al. A small stored measurement system for shock wave based on PCB sensor [J]. Chinese Journal of Electron Devices, 2014, 37(1): 119–122. DOI: 10.3969/j.issn.1005-9490.2014.01.028.
    [73] 郑敬辰. 基于ARM的冲击波传感器阵列校时及数据传输系统研制 [D]. 哈尔滨: 黑龙江大学, 2020. DOI: 10.27123/d.cnki.ghlju.2020.000461.
    [74] 许其容, 尤文斌, 马铁华, 等. 基于无线控制的爆炸场多参数存储测试系统 [J]. 电子器件, 2014, 37(2): 307–310. DOI: 10.3969/j.issn.1005-9490.2014.02.030.

    MA Q R, YOU W B, MA T H, et al. Based on the wireless control parameters of shock wave storage test system [J]. Chinese Journal of Electron Devices, 2014, 37(2): 307–310. DOI: 10.3969/j.issn.1005-9490.2014.02.030.
    [75] 胡洋, 尹尚先, ARNTZEN J B, 等. 矿井瓦斯/空气预混气体爆燃的激光纹影测试系统设计 [J]. 光学 精密工程, 2019, 27(5): 1045–1051. DOI: 10.3788/OPE.20192705.1045.

    HU Y, YIN S X, ARNTZEN J B, et al. Design of laser schlieren test system for mine gas/air premixed gas deflagration [J]. Optics and Precision Engineering, 2019, 27(5): 1045–1051. DOI: 10.3788/OPE.20192705.1045.
    [76] 郑星, 黄海莹, 毛勇建, 等. 基于高速纹影技术的爆炸冲击波图像测量研究 [J]. 光学精密工程, 2022, 30(18): 2187–2194. DOI: 10.37188/OPE.20223018.2187.

    ZHENG X, HUANG H Y, MAO Y J, et al. Research on image measurement of explosion shock wave based on high speed schlieren technology [J]. Optics and Precision Engineering, 2022, 30(18): 2187–2194. DOI: 10.37188/OPE.20223018.2187.
    [77] 李斌, 王雨, 周志强, 等. 爆炸冲击波威力高速纹影测量方法 [J]. 光学与光电技术, 2018, 16(2): 43–49. DOI: 10.19519/j.cnki.1672-3392.2018.02.008.

    LI B, WANG Y, ZHOU Z Q, et al. High-speed schlieren photography for measuring the explosive blast wave power [J]. Optics & Optoelectronic Technology, 2018, 16(2): 43–49. DOI: 10.19519/j.cnki.1672-3392.2018.02.008.
    [78] 张雄星, 王伟, 刘光海, 等. 温度场纹影定量测量技术 [J]. 中国光学, 2018, 11(5): 860–873. DOI: 10.3788/CO.20181105.0860.

    ZHENG X X, WANG W, LIU G H, et al. Quantative measuring technique for the temperature of flow fields in schlieren systems [J]. Chinese Optics, 2018, 11(5): 860–873. DOI: 10.3788/CO.20181105.0860.
    [79] 施宇成, 孔德仁, 徐春冬, 等. 爆炸场冲击波压力测量及其传感器技术现状分析 [J]. 测控技术, 2022, 41(11): 1–10,34. DOI: 10.19708/j.ckjs.2022.03.240.

    SHI Y C, KONG D R, XU C D, et al. Status analysis of shock wave pressure measurement and sensor technology in explosion field [J]. Measurement & Control Technology, 2022, 41(11): 1–10,34. DOI: 10.19708/j.ckjs.2022.03.240.
    [80] 刘东来, 王伟魁, 李文博, 等. 冲击波超压传感器研究现状 [J]. 遥测遥控, 2019, 40(5): 7–15. DOI: 10.13435/j.cnki.ttc.003024.

    LIU D L, WANG W K, LI B W, et al. Research status of shock wave overpressure sensor [J]. Journal of Telemetry, Tracking and Command, 2019, 40(5): 7–15. DOI: 10.13435/j.cnki.ttc.003024.
    [81] 褚程雷. 面向冲击波测量的光纤法布里-珀罗腔压力传感器研究 [D]. 武汉: 武汉理工大学, 2021. DOI: 10.27381/d.cnki.gwlgu.2021.000454.
    [82] SMITH C S. Piezoresistance effect in germanium and silicon [J]. Physical Review, 1954, 94(1): 42–49. DOI: 10.1103/PhysRev.94.42.
    [83] 胡宇. 锰铜压阻式水下爆炸近场超压测试方法研究 [D]. 北京: 北京理工大学, 2015.
    [84] FULLER P J A, PRICE J H. Electrical conductivity of manganin and iron at high pressures [J]. Nature, 1962, 193(4812): 262–263. DOI: 10.1038/193262a0.
    [85] BERNSTEIN D, KEOUGH D D. Piezoresistivity of manganin [J]. Journal of Applied Physics, 1964, 35(5): 1471–1474. DOI: 10.1063/1.1713651.
    [86] 阎文静, 张鉴, 高香梅. 压阻式压力传感器性能的研究 [J]. 传感器世界, 2012, 18(2): 14–17,13. DOI: 10.16204/j.cnki.sw.2012.02.006.

    YAN W J, ZHANG J, GAO X M. Research on performances of piezoresistive pressure sensor [J]. Sensor World, 2012, 18(2): 14–17,13. DOI: 10.16204/j.cnki.sw.2012.02.006.
    [87] OTMANI R, BENMOUSSA N, BENYOUCEF B. The thermal drift characteristics of piezoresistive pressure sensor [J]. Physics Procedia, 2011, 21: 47–52. DOI: 10.1016/j.phpro.2011.10.008.
    [88] ARYAFAR M, HAMEDI M, GANJEH M M. A novel temperature compensated piezoresistive pressure sensor [J]. Measurement, 2015, 63: 25–29. DOI: 10.1016/j.measurement.2014.11.032.
    [89] 王冰. 高频动态压力传感器设计与应用 [D]. 西安: 西安电子科技大学, 2009.
    [90] 吴如兆. 高频冲击波测量专用压力传感器研究 [D]. 上海: 复旦大学, 2010.
    [91] 杜红棉, 祖静, 张志杰. 压阻传感器8530B闪光响应规律研究 [J]. 测试技术学报, 2011, 25(1): 78–81. DOI: 10.3969/j.issn.1671-7449.2011.01.014.

    DU H M, ZU J, ZHANG Z J. Research on photoflash response of piezoresistive transducers 8503B [J]. Journal of Test and Measurement Technology, 2011, 25(1): 78–81. DOI: 10.3969/j.issn.1671-7449.2011.01.014.
    [92] 张健中, 杜红棉, 韩青林, 等. 压阻式压力传感器光干扰消除实验及测试 [J]. 仪表技术与传感器, 2014(1): 14–15,18. DOI: 10.3969/j.issn.1002-1841.2014.01.005.

    ZHANG J Z, DU H M, HAN Q L, et al. Experiment and test of photoflash response elimination for piezoresistive pressure sensor [J]. Instrument Technique and Sensor, 2014(1): 14–15,18. DOI: 10.3969/j.issn.1002-1841.2014.01.005.
    [93] 邬林, 陈丛, 钱江蓉, 等. 基于压阻效应的陶瓷压力传感器 [J]. 仪表技术与传感器, 2017(6): 26–28. DOI: 10.3969/j.issn.1002-1841.2017.06.007.

    WU L, CHEN C, QIAN J R, et al. Ceramic pressure sensor based on piezoresistive effect [J]. Instrument Technique and Sensor, 2017(6): 26–28. DOI: 10.3969/j.issn.1002-1841.2017.06.007.
    [94] 韩红彪, 王冰, 李济顺, 等. 无线存储式爆炸冲击波压阻压力传感器研制 [C]//第五届全国爆炸力学实验技术学术会议论文集. 西安: 中国力学学会爆炸力学实验技术专业组, 2008: 5.
    [95] 果明明. 用碳压阻传感器测量低冲击波压力 [J]. 传感器技术, 1994(4): 21–26. DOI: 10.13873/j.1000-97871994.04.005.
    [96] DOLLEMAN R J, DAVIDOVIKJ D, CARTAMIL-BUENO S J, et al. Graphene squeeze-film pressure sensors [J]. Nano Letters, 2016, 16(1): 568–571. DOI: 10.1021/acs.nanolett.5b04251.
    [97] 吴瑞瑞. 硅压阻式压力传感器系统设计及其温度补偿方法研究 [D]. 淮北: 淮北师范大学, 2023. DOI: 10.27699/d.cnki.ghbmt.2023.000049.
    [98] 史宇. 一种柔性压阻式压力传感器的结构设计及其性能分析 [D]. 西安: 西安理工大学, 2023. DOI: 10.27398/d.cnki.gxalu.2023.000752.
    [99] RIONDET J, COUSTOU A, AUBERT H, et al. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges [J]. Journal of Physics: Conference Series, 2017, 922: 012019. DOI: 10.1088/1742-6596/922/1/012019.
    [100] SANCHEZ K, ACHOUR B, COUSTOU A, et al. Transient response of miniature piezoresistive pressure sensor dedicated to blast wave monitoring [J]. Sensors, 2022, 22(24): 9571. DOI: 10.3390/s22249571.
    [101] ZHANG G D, ZHAO Y L, ZHAO Y, et al. A manganin thin film ultra-high pressure sensor for microscale detonation pressure measurement [J]. Sensors, 2018, 18(3): 736. DOI: 10.3390/s18030736.
    [102] ENDEVCO SENSORS | PCB piezotronics [EB/OL]. [2024-10-09]. https://endevco.com/.
    [103] Kulite. The leader in pressure transducer technology [EB/OL]. [2024-10-09]. https://kulite.com.
    [104] 王毅, 陆明, 丁士轩. 基于压电式压力传感器的冲击波载荷测试系统设计 [J]. 机械, 2014, 41(12): 62–66. DOI: 10.3969/j.issn.1006-0316.2014.12.019.

    WANG Y, LU M, DING S X. The design of testing system for explosive blast loading using piezoelectric type pressure transducer [J]. Machinery, 2014, 41(12): 62–66. DOI: 10.3969/j.issn.1006-0316.2014.12.019.
    [105] YANG F, KONG D R, KONG L. Accurate measurement of high-frequency blast waves through dynamic compensation of miniature piezoelectric pressure sensors [J]. Sensors and Actuators A: Physical, 2018, 280: 14–23. DOI: 10.1016/j.sna.2018.07.029.
    [106] 翁斌辉. 基于PVDF压电薄膜的柔性压力传感器设计制作及应用研究 [D]. 杭州: 杭州电子科技大学, 2023. DOI: 10.27075/d.cnki.ghzdc.2023.000813.
    [107] 蔡思康. 激波测量用高频动态压电式压力传感器研究 [D]. 济南: 济南大学, 2023. DOI: 10.27166/d.cnki.gsdcc.2023.000616.
    [108] 何天明. 柔性压力传感器冲击波测量特性 [D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000605.
    [109] LIANG R J, WANG Q M. High sensitivity piezoelectric sensors using flexible PZT thick-film for shock tube pressure testing [J]. Sensors and Actuators A: Physical, 2015, 235: 317–327. DOI: 10.1016/j.sna.2015.09.027.
    [110] 刘相果, 程晋明, 祁双喜, 等. 球面阵列压力传感器的研究 [J]. 压电与声光, 2010, 32(1): 48–50,54. DOI: 10.3969/j.issn.1004-2474.2010.01.014.

    LIU X G, CHENG J M, QI S X, et al. Study on spherical array pressure gauge [J]. Piezoelectrics & Acoustooptics, 2010, 32(1): 48–50,54. DOI: 10.3969/j.issn.1004-2474.2010.01.014.
    [111] BAUER F. PVDF gauge piezoelectric response under two-stage light gas gun impact loading [J]. AIP Conference Proceedings, 2002, 620(1): 1149–1152. DOI: 10.1063/1.1483741.
    [112] 郭士旭, 余尚江, 陈晋央, 等. 压电式压力传感器动态特性补偿技术研究 [J]. 振动与冲击, 2016, 35(2): 136–140. DOI: 10.13465/j.cnki.jvs.2016.02.022.

    GUO S X, YU S J, CHEN J Y, et al. Dynamic compensation technique for piezoelectric pressure sensors [J]. Journal of Vibration and Shock, 2016, 35(2): 136–140. DOI: 10.13465/j.cnki.jvs.2016.02.022.
    [113] 杜红棉, 祖静, 马铁华, 等. 自由场传感器外形结构对冲击波测试的影响研究 [J]. 振动与冲击, 2011, 30(11): 85–89. DOI: 10.13465/j.cnki.jvs.2011.11.004.

    DU H M, ZU J, MA T H, et al. Effect of mount configuration of free-field transducers on shock wave measurement [J]. Journal of Vibration and Shock, 2011, 30(11): 85–89. DOI: 10.13465/j.cnki.jvs.2011.11.004.
    [114] 邱艳宇, 卢红标, 蔡立艮, 等. 压电传感器受爆炸瞬变温度影响的试验研究 [J]. 爆破, 2010, 27(4): 31–34,39. DOI: 10.3963/j.issn.1001-487X.2010.04.008.

    QIU Y Y, LU H B, CAI L G, et al. Experimental research on effect of explosion transient temperature on piezoelectric sensors [J]. Blasting, 2010, 27(4): 31–34,39. DOI: 10.3963/j.issn.1001-487X.2010.04.008.
    [115] 王永强, 肖英淋, 刘长林. 封装材料对PVDF薄膜传感器激波响应的影响 [J]. 测试技术学报, 2015, 29(3): 256–260. DOI: 10.3969/j.issn.1671-7449.2015.03.015.

    WANG Y Q, XIAO Y L, LIU C L. Effect of packaging material on shock wave response of PVDF film sensor [J]. Journal of Test and Measurement Technology, 2015, 29(3): 256–260. DOI: 10.3969/j.issn.1671-7449.2015.03.015.
    [116] 谢林, 刘迎彬, 范志强, 等. 基于复合压电效应的PVDF传感器测量性能调控 [J]. 高压物理学报, 2023, 37(4): 043401. DOI: 10.11858/gywlxb.20230645.

    XIE L, LIU Y B, FAN Z Q, et al. Measurement performance regulation of PVDF sensor based on composite piezoelectricity [J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 043401. DOI: 10.11858/gywlxb.20230645.
    [117] Model 137B23B | PCB piezotronics [EB/OL]. [2024-10-09]. https://www.pcb.com/products?m=137b23b.
    [118] Model 113B21 | PCB piezotronics [EB/OL]. [2024-10-09]. https://www.pcb.com/products?m=113b21.
    [119] 袁佳艳, 狄长安, 徐天文, 等. 基于电荷输出型压电传感器的冲击波超压存储测试系统 [J]. 传感器与微系统, 2016, 35(11): 107–108,112. DOI: 10.13873/J.1000-9787(2016)11-0107-02.

    YUAN J Y, DI C A, XU T W, et al. Storage and test system for shock wave pressure based on charge output type piezoelectric sensor [J]. Transducer and Microsystem Technologies, 2016, 35(11): 107–108,112. DOI: 10.13873/J.1000-9787(2016)11-0107-02.
    [120] PCB Piezotronics | Measure vibration, pressure, force, and more[EB/OL]. [2024-10-13]. https://www.pcb.com/.
    [121] B&K | Sound and vibration measurement | Brüel & Kjær [EB/OL]. [2024-10-09]. https://www.bksv.com/en.
    [122] 孙晓明, 黄正平, 白春华, 等. 一种新型的带放大器的压杆式压电压力传感器及其在爆炸测试技术中的应用 [J]. 中国安全科学学报, 1998(5): 60–63. DOI: 10.16265/j.cnki.issn1003-3033.1998.05.013.

    SUN X M, HUANG Z P, BAI C H, et al. A new type of piezoelectric pressure gauge with an amplifier and its application [J]. China Safety Science Journal, 1998(5): 60–63. DOI: 10.16265/j.cnki.issn1003-3033.1998.05.013.
    [123] 赵伟绩. 基于MEMS光纤压力传感器的研究 [D]. 南京: 南京信息工程大学, 2018.
    [124] 隋丹丹. 面向接触力检测的柔性光纤压力传感器制造技术研究 [D]. 太原: 中北大学, 2021. DOI: 10.27470/d.cnki.ghbgc.2021.000223.
    [125] 杨洋. 光纤F-P干涉传感器高分辨动态解调技术及应用研究 [D]. 大连: 大连理工大学, 2020. DOI: 10.26991/d.cnki.gdllu.2020.003792.
    [126] CHAVKO M, KOLLER W A, PRUSACZYK W K, et al. Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain [J]. Journal of Neuroscience Methods, 2007, 159(2): 277–281. DOI: 10.1016/j.jneumeth.2006.07.018.
    [127] 孙哲. 薄膜式光纤压力传感技术研究 [D]. 西安: 西安工业大学, 2023. DOI: 10.27391/d.cnki.gxagu.2023.000331.
    [128] 申佳鑫. 冲击波压力测量光纤传感与技术研究[D/OL]. 西安: 西安工业大学, 2023.
    [129] XU F, REN D X, SHI X L, et al. High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm [J]. Optics Letters, 2012, 37(2): 133–135. DOI: 10.1364/OL.37.000133.
    [130] 张红柱. 基于法布里-珀罗干涉的薄膜式光纤气压和气流传感器研究 [D]. 济南: 山东大学, 2022. DOI: 10.27272/d.cnki.gshdu.2022.004778.
    [131] 许佳伟. 光纤—金膜短腔F-P水声传感单元研究 [D]. 武汉: 武汉理工大学, 2020. DOI: 10.27381/d.cnki.gwlgu.2020.000529.
    [132] 许健. 全石英光纤F-P压力传感器的研究 [D]. 武汉: 武汉理工大学, 2015.
    [133] BEARD P C, HURRELL A M, MILLS T N. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(1): 256–264. DOI: 10.1109/58.818769.
    [134] MACPHERSON W N, GANDER M J, BARTON J S, et al. Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor [J]. Measurement Science and Technology, 2000, 11(2): 95–102. DOI: 10.1088/0957-0233/11/2/302.
    [135] WU N, WANG W H, TIAN Y, et al. Ultra fast all-optical fiber pressure sensor for blast event evaluation [C]//Proceedings of SPIE 7753, 21st International Conference on Optical Fiber Sensors. Ottawa: SPIE, 2011: 77535J. DOI: 10.1117/12.885104.
    [136] BAE H, ZHANG X M, LIU H, et al. Miniature surface-mountable Fabry–Perot pressure sensor constructed with a 45° angled fiber [J]. Optics Letters, 2010, 35(10): 1701–1703. DOI: 10.1364/OL.35.001701.
    [137] MA J, XUAN H F, HO H L, et al. Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm [J]. IEEE Photonics Technology Letters, 2013, 25(10): 932–935. DOI: 10.1109/LPT.2013.2256343.
    [138] 罗小东. 光纤光栅加速度传感器的设计与传感性能研究 [D]. 西安: 陕西师范大学, 2022. DOI: 10.27292/d.cnki.gsxfu.2022.000744.
    [139] 张雯, 孟凡勇, 宋言明, 等. 飞秒刻写光纤F-P腔级联FBG传感特性研究 [J]. 仪器仪表学报, 2017, 38(9): 2193–2199. DOI: 10.19650/j.cnki.cjsi.2017.09.013.

    ZHANG W, MENG F Y, SONG Y M, et al. Research on the cascaded fiber F-P cavity fabricated by femtosecond laser with FBG and its sensing characterization [J]. Chinese Journal of Scientific Instrument, 2017, 38(9): 2193–2199. DOI: 10.19650/j.cnki.cjsi.2017.09.013.
    [140] 康凤霞. 高g值加速度传感器的动态特性研究 [D]. 太原: 中北大学, 2009.
    [141] 杨杏敏. 大过载压阻式加速度计设计、封装与测试 [D]. 太原: 中北大学, 2011.
    [142] 张中才. 大量程高频响压电加速度传感器设计技术研究 [D]. 绵阳: 中国工程物理研究院, 2008.
    [143] 王存玲. 新型压阻式加速度传感器的研究 [D]. 西安: 西安科技大学, 2011.
    [144] 杨宇新. 高过载高固有频率压阻式加速度传感器芯片研究 [D]. 沈阳: 沈阳工业大学, 2022. DOI: 10.27322/d.cnki.gsgyu.2022.001016.
    [145] 何洪涛. 新型MEMS压阻高冲击加速度传感器技术研究 [D]. 西安: 西安电子科技大学, 2012.
    [146] ROYLANCE L M, ANGELL J B. A batch-fabricated silicon accelerometer [J]. IEEE Transactions on Electron Devices, 1979, 26(12): 1911–1917. DOI: 10.1109/T-ED.1979.19795.
    [147] 王毓婷. 压阻式三轴高g值加速度传感器设计 [D]. 太原: 中北大学, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.000647.
    [148] 张旭. 压阻型大加速度计的研制 [D]. 南京: 东南大学, 2002.
    [149] MO Y M, YANG J, PENG B, et al. Design and verification of a structure for isolating stress in sandwich MEMS accelerometer [J]. Microsystem Technologies, 2021, 27(5): 1943–1950. DOI: 10.1007/s00542-020-04980-w.
    [150] 陈嘉俊. 三轴高g值加速度计的优化设计及其在多层硬目标侵彻中的应用研究 [D]. 南京: 南京理工大学, 2020. DOI: 10.27241/d.cnki.gnjgu.2020.001527.
    [151] 肖峰. 压电加速度传感器频率特性及高温性能优化研究 [D]. 成都: 电子科技大学, 2023. DOI: 10.27005/d.cnki.gdzku.2023.003195.
    [152] 曾宏川. 压电加速度传感器优化设计与高温特性研究 [D]. 成都: 电子科技大学, 2021. DOI: 10.27005/d.cnki.gdzku.2021.000537.
    [153] 骆丹. MEMS数字加速度计测试系统研究 [D]. 西安: 西安电子科技大学, 2018.
    [154] 林国鑫. MEMS加速度计的误差补偿技术研究 [D]. 北京: 北京化工大学, 2022. DOI: 10.26939/d.cnki.gbhgu.2022.000728.
    [155] 李文燕, 郭涛, 徐香菊. MEMS高量程微加速度计温度补偿的设计 [J]. 计算机测量与控制, 2012, 20(10): 2857–2859. DOI: 10.16526/j.cnki.11-4762/tp.2012.10.007.

    LI W Y, GUO T, XU X J. Design of MEMS high—G micro accelerometer temperature compensation [J]. Computer Measurement & Control, 2012, 20(10): 2857–2859. DOI: 10.16526/j.cnki.11-4762/tp.2012.10.007.
    [156] 张乐. IEPE加速度传感器动态特性分析与实验研究 [D]. 重庆: 重庆大学, 2000. DOI: 10.27670/d.cnki.gcqdu.2020.003977.
    [157] 穆如旺. 电容式加速度计性能影响因素研究 [D]. 三河: 防灾科技学院, 2018.
    [158] 张程浩. 一种MEMS加速度计的动力学特性测试研究 [D]. 北京: 北方工业大学, 2017.
    [159] 张萌. 高性能MEMS加速度计的研究与制备 [D]. 北京: 中国科学院大学, 2020.
    [160] 王一翔. 基于氮化铝的压电谐振式MEMS加度计研究 [D]. 杭州: 浙江大学, 2017.
    [161] 贡旭超. 硅微谐振式加速度计封装应力辨识及验证 [D]. 南京: 南京理工大学, 2021. DOI: 10.27241/d.cnki.gnjgu.2021.002845.
    [162] 王玲. 硅微电容式、隧道式加速度计检测技术研究 [D]. 太原: 中北大学, 2007.
    [163] 张子豪. 微型光纤F-P加速度传感器及其热致振动测量研究 [D]. 武汉: 武汉理工大学, 2021. DOI: 10.27381/d.cnki.gwlgu.2021.000639.
    [164] 王晓云. 法布里—珀罗干涉型高精度光纤加速度计关键技术研究 [D]. 武汉: 华中科技大学, 2022. DOI: 10.27157/d.cnki.ghzku.2022.003606.
    [165] 刘钦朋, 李星睿, 王丹洋, 等. 光纤F-P腔高灵敏加速度传感器理论模型研究 [J]. 光电子·激光, 2023, 34(9): 897–903. DOI: 10.16136/j.joel.2023.09.0705.

    LIU Q P, LI X R, WANG D Y, et al. Research on theoretical model of fiber optic F-P cavity acceleration sensor with high sensitivity [J]. Journal of Optoelectronics·Laser, 2023, 34(9): 897–903. DOI: 10.16136/j.joel.2023.09.0705.
    [166] 石义春. 基于F-P腔的光纤加速度计解调技术 [D]. 哈尔滨: 哈尔滨工程大学, 2017.
    [167] 熊振宇. 爆炸冲击波信号处理方法研究 [D]. 太原: 中北大学, 2021. DOI: 10.27470/d.cnki.ghbgc.2021.000772.
    [168] 张春棋. 爆炸场冲击波信号处理方法及传播特性研究 [D]. 南京: 南京理工大学, 2016.
    [169] 戴英杰. 基于压缩感知的冲击波去噪重构算法研究 [D]. 长春: 长春理工大学, 2022. DOI: 10.26977/d.cnki.gccgc.2022.000410.
    [170] XIA Y L, ZHAI Y. Dynamic compensation and its application of shock wave pressure sensor [J]. Journal of Measurement Science and Instrumentation, 2016, 7(1): 48–53. DOI: 10.3969/j.issn.1674-8042.2016.01.010.
    [171] CAO J J, CAI Z C, LIANG W Q. A novel thresholding method for simultaneous seismic data reconstruction and denoising [J]. Journal of Applied Geophysics, 2020, 177: 104027. DOI: 10.1016/j.jappgeo.2020.104027.
    [172] 李娜娜, 李有明, 余明宸, 等. 水声通信中基于正则化阈值迭代的脉冲噪声抑制方法 [J]. 电信科学, 2019, 35(3): 76–83. DOI: 10.11959/j.issn.1000-0801.2019010.

    LI N N, LI Y M, YU M C, et al. Regularized threshold iteration method for impulsive noise suppression in underwater acoustic communication [J]. Telecommunications Science, 2019, 35(3): 76–83. DOI: 10.11959/j.issn.1000-0801.2019010.
    [173] 豆佳敏. 基于深度学习的冲击波信号压缩感知方法 [D]. 长春: 长春理工大学, 2021. DOI: 10.26977/d.cnki.gccgc.2021.000553.
    [174] 张衍芳. 冲击波信号处理方法的研究 [D]. 太原: 中北大学, 2011.
    [175] 童晓. 爆炸场冲击波压力测量及数据处理方法研究 [D]. 南京: 南京理工大学, 2015.
    [176] 张立恒, 王少龙, 颜澎, 等. 爆炸冲击波测试数据处理方法研究 [J]. 弹箭与制导学报, 2010, 30(3): 107–110. DOI: 10.15892/j.cnki.djzdxb.2010.03.001.

    ZHANG L H, WANG S L, YAN P, et al. Study on blast wave test data processing methods [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(3): 107–110. DOI: 10.15892/j.cnki.djzdxb.2010.03.001.
    [177] DONOHO D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(3): 613–627. DOI: 10.1109/18.382009.
    [178] MAYS B T. Shockwave and muzzle blast classification via joint time frequency and wavelet analysis [R]. Maryland: Army Research Laboratory Adelphi, 2001.
    [179] 张衍芳, 杜红棉, 祖静. 冲击波信号后期处理方法研究 [J]. 工程与试验, 2010, 50(4): 15–18. DOI: 10.3969/j.issn.1674-3407.2010.04.006.

    ZHANG Y F, DU H M, ZU J. Research on post treatment method for shockwave signals [J]. Engineering & Test, 2010, 50(4): 15–18. DOI: 10.3969/j.issn.1674-3407.2010.04.006.
    [180] 张克刚, 叶湘滨. 基于短时能量和小波去噪的枪声信号检测方法 [J]. 电测与仪表, 2015, 52(S1): 130–132,138. DOI: 10.3969/j.issn.1001-1390.2015.z1.031.

    ZHANG K G, YE X B. A method of the gunfire signal detecting based on short-time energy and wavelet denoising [J]. Electrical Measurement & Instrumentation, 2015, 52(S1): 130–132,138. DOI: 10.3969/j.issn.1001-1390.2015.z1.031.
    [181] 赖富文, 张志杰, 刘景江, 等. 基于炮口脉冲噪声信号的射速测试方法研究 [J]. 兵工学报, 2013, 34(9): 1180–1186. DOI: 10.3969/j.issn.1000-1093.2013.09.020.

    LAI F W, ZHANG Z J, LIU J J, et al. Research on testing firing rate based on muzzle impulse noise [J]. Acta Armamentarii, 2013, 34(9): 1180–1186. DOI: 10.3969/j.issn.1000-1093.2013.09.020.
    [182] 刘文涛, 陈红, 蔡晓霞, 等. 基于双树复小波变换的信号去噪算法 [J]. 火力与指挥控制, 2014, 39(12): 84–87.

    LIU W T, CHEN H, CAI X X, et al. Signal denoising algorithm based on dual-tree complex wavelet transform [J]. Fire Control & Command Control, 2014, 39(12): 84–87.
    [183] 王芳, 季忠, 彭承琳. 基于双树复小波变换的心电信号去噪研究 [J]. 仪器仪表学报, 2013, 34(5): 1160–1166. DOI: 10.19650/j.cnki.cjsi.2013.05.029.

    WANG F, JI Z, PENG C L. Research on ECG signal denoising based on dual-tree complex wavelet transform [J]. Chinese Journal of Scientific Instrument, 2013, 34(5): 1160–1166. DOI: 10.19650/j.cnki.cjsi.2013.05.029.
    [184] 梁晶, 熊振宇, 裴东兴, 等. 爆炸冲击波信号的降噪处理 [J]. 火力与指挥控制, 2022, 47(8): 79–84. DOI: 10.3969/j.issn.1002-0640.2022.08.013.

    LIANG J, XIONG Z Y, PEI D X, et al. Research on noise reduction process of explosion shock wave signal [J]. Fire Control & Command Control, 2022, 47(8): 79–84. DOI: 10.3969/j.issn.1002-0640.2022.08.013.
    [185] 刘宇, 李新娥, 崔春生, 等. 去除爆炸冲击波信号高频噪声的联合处理方法 [J]. 探测与控制学报, 2023, 45(2): 61–66.

    LIU Y, LI X E, CUI C S, et al. A joint processing method of removing high frequency noise from shock wave signal [J]. Journal of Detection & Control, 2023, 45(2): 61–66.
    [186] HRISTOV N, KARI A, JERKOVIĆ D, et al. Simulation and measurements of small arms blast wave overpressure in the process of designing a silencer [J]. Measurement Science Review, 2015, 15(1): 27–34. DOI: 10.1515/msr-2015-0005.
    [187] REHMAN H, HWANG S H, FAJAR B, et al. Analysis and attenuation of impulsive sound pressure in large caliber weapon during muzzle blast [J]. Journal of Mechanical Science and Technology, 2011, 25(10): 2601–2606. DOI: 10.1007/s12206-011-0731-2.
    [188] 赵海涛, 王成. 空中爆炸问题的高精度数值模拟研究 [J]. 兵工学报, 2013, 34(12): 1536–1546. DOI: 10.3969/j.issn.1000-1093.2013.12.008.

    ZHAO H T, WANG C. High resolution numerical simulation of air explosion [J]. Acta Armamentarii, 2013, 34(12): 1536–1546. DOI: 10.3969/j.issn.1000-1093.2013.12.008.
    [189] 王杨, 姜孝海, 郭则庆. 膛口冲击波物理模型数值分析 [J]. 弹道学报, 2010, 22(1): 57–60.

    WANG Y, JIANG X H, GUO Z Q. Numerical analysis on physical model of muzzle blast wave [J]. Journal of Ballistics, 2010, 22(1): 57–60.
    [190] 张远平, 池家春, 龚晏青, 等. 爆炸冲击波压力测试技术及其复杂信号的处理方法 [C]//中国仪器仪表学会第九届青年学术会议论文集. 黄山: 中国仪器仪表学会青年工作委员会, 2007: 4.
    [191] FENG H, ZHANG Z J. Reconstruction of shock wave pressure field based on distributed test system [J]. Journal of Measurement Science and Instrumentation, 2015, 6(1): 25–29. DOI: 10.3969/j.issn.1674-8042.2015.01.005.
    [192] 赖富文, 张志杰, 胡桂梅, 等. 某型舰炮炮口冲击波等压场测试方法 [J]. 传感技术学报, 2015, 28(1): 77–80. DOI: 10.3969/j.issn.1004-1699.2015.01.014.

    LAI F W, ZHANG Z J, HU G M, et al. A method to measure muzzle shock wave pressure field for a naval gun [J]. Chinese Journal of Sensors and Actuators, 2015, 28(1): 77–80. DOI: 10.3969/j.issn.1004-1699.2015.01.014.
    [193] 杨志, 张志杰, 夏永乐. 基于B样条插值拟合的冲击波超压场重建 [J]. 科学技术与工程, 2016, 16(7): 236–240. DOI: 10.3969/j.issn.1671-1815.2016.07.040.

    YANG Z, ZHANG Z J, XIA Y L. Resconstruction of shock ware overpressure filed based on B-Spline interpolation [J]. Science Technology and Engineering, 2016, 16(7): 236–240. DOI: 10.3969/j.issn.1671-1815.2016.07.040.
    [194] 白苗苗, 郭亚丽, 王黎明. 基于爆炸超压场重建的传感器优化布局技术研究 [J]. 传感技术学报, 2014, 27(7): 886–892. DOI: 10.3969/j.issn.1004-1699.2014.07.007.

    BAI M M, GUO Y L, WANG L M. Study on optimal sensor placement method based on the reconstruction of explosion overpressure field [J]. Chinese Journal of Sensors and Actuators, 2014, 27(7): 886–892. DOI: 10.3969/j.issn.1004-1699.2014.07.007.
    [195] TUGRUL B, POLAT H. Privacy-preserving inverse distance weighted interpolation [J]. Arabian Journal for Science and Engineering, 2014, 39(4): 2773–2781. DOI: 10.1007/s13369-013-0887-4.
    [196] STEIN M L. Interpolation of spatial data [M]. New York: Springer, 1999. DOI: 10.1007/978-1-4612-1494-6.
    [197] POUDEROUX J, GONZATO J C, TOBOR I, et al. Adaptive hierarchical RBF interpolation for creating smooth digital elevation models [C]//Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems. Washington: ACM, 2004: 232-240. DOI: 10.1145/1032222.1032256.
    [198] 黄炳潇. 爆炸场景数字建模与数值仿真研究 [D]. 成都: 电子科技大学, 2023. DOI: 10.27005/d.cnki.gdzku.2023.003285.
    [199] 张健. 爆炸场冲击波数据处理方法研究 [D]. 太原: 中北大学, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.000507.
    [200] DOWELL E H, HALL K C, ROMANOWSKI M C. Eigenmode analysis in unsteady aerodynamics: reduced order models [J]. American Society of Mechanical Engineers, 1997, 50(6): 371–386. DOI: 10.1115/1.3101718.
    [201] SCHMID P J. Dynamic mode decomposition of numerical and experimental data [J]. Journal of Fluid Mechanics, 2010, 656: 5–28. DOI: 10.1017/S0022112010001217.
    [202] 曹晓峰, 李鸿岩, 郭承鹏, 等. 基于深度学习的二维翼型流场重构技术研究 [J]. 航空科学技术, 2022, 33(7): 106–112. DOI: 10.19452/j.issn1007-5453.2022.07.012.

    CAO X F, LI H Y, GUO C P, et al. Research on two-dimensional airfoil flow field reconstruction based on deep learning [J]. Aeronautical Science and Technology, 2022, 33(7): 106–112. DOI: 10.19452/j.issn1007-5453.2022.07.012.
    [203] 韩仁坤, 刘子扬, 钱炜祺, 等. 基于深度神经网络的流场时空重构方法 [J]. 实验流体力学, 2022, 36(3): 118–126. DOI: 10.11729/syltlx20210124.

    HAN R K, LIU Z Y, QIAN W Q, et al. Spatio-temporal reconstruction method of flow field based on deep neural network [J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 118–126. DOI: 10.11729/syltlx20210124.
    [204] 周沈楠, 王仲琦, 李其中. 基于物理模型分析与深度神经网络融合的爆炸流场实时模拟方法 [J]. 安全与环境学报, 2024, 24(5): 1681–1690. DOI: 10.13637/j.issn.1009-6094.2023.0758.

    ZHOU S N, WANG Z Q, LI Q Z. Real-time explosion field modeling by fusing physical model-based analysis with deep neural network [J]. Journal of Safety and Environment, 2024, 24(5): 1681–1690. DOI: 10.13637/j.issn.1009-6094.2023.0758.
    [205] LIU B, MEDDA A, WOODS D, et al. The integrated blast effects sensor suite: a rapidly developed, complex, system of systems [J]. Military Medicine, 2015, 180(S3): 195–200. DOI: 10.7205/MILMED-D-14-00455.
    [206] DANIEL J, NG T N, GARNER S, et al. Pressure sensors for printed blast dosimeters [C]//Proceedings of SENSORS, 2010 IEEE. Waikoloa: IEEE, 2010: 2259-2263. DOI: 10.1109/ICSENS.2010.5690713.
    [207] SHIELD[EB/OL]. [2024-10-09]. https://oceanit.com/products/shield/.
    [208] WIRI S, NEEDHAM C. Reconstruction of improvised explosive device blast loading to personnel in the open [J]. Shock Waves, 2016, 26(3): 279–286. DOI: 10.1007/s00193-016-0644-1.
    [209] NAKASHIMA A, VARTANIAN O, RHIND S G, et al. Repeated occupational exposure to low-level blast in the canadian armed forces: effects on hearing, balance, and ataxia [J]. Military Medicine, 2022, 187(1/2): e201–e208. DOI: 10.1093/milmed/usaa439.
    [210] WIRI S, NEEDHAM C, ORTLEY D, et al. Development of a fast-running algorithm to approximate incident blast parameters using body-mounted sensor measurements [J]. Military Medicine, 2022, 187(11/12): e1354–e1362. DOI: 10.1093/milmed/usab411.
    [211] FAIN W B, PHELPS S, MEDDA A. Lessons learned from the analysis of soldier collected blast data [J]. Military Medicine, 2015, 180(S3): 201–206. DOI: 10.7205/MILMED-D-14-00431.
    [212] MULKEY N, LIU B, MEDDA A. The integrated blast effects sensor suite: a rapidly developed, complex, system of systems [C]//Proceedings of the 2013 8th International Conference on System of Systems Engineering. Maui: IEEE, 2013: 224–228. DOI: 10.1109/SYSoSE.2013.6575271.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  18
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 修回日期:  2024-10-10
  • 网络出版日期:  2024-10-21

目录

    /

    返回文章
    返回