• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

一种PETN基超薄片炸药的爆轰性能及比冲量特性

郭志昀 卢强 丁洋 张亮永 李进

郭志昀, 卢强, 丁洋, 张亮永, 李进. 一种PETN基超薄片炸药的爆轰性能及比冲量特性[J]. 爆炸与冲击, 2025, 45(4): 041403. doi: 10.11883/bzycj-2024-0132
引用本文: 郭志昀, 卢强, 丁洋, 张亮永, 李进. 一种PETN基超薄片炸药的爆轰性能及比冲量特性[J]. 爆炸与冲击, 2025, 45(4): 041403. doi: 10.11883/bzycj-2024-0132
GUO Zhiyun, LU Qiang, DING Yang, ZHANG LiangYong, LI Jin. Detonation performance and specific impulse characteristics of a PETN-based ultra-thin sheet explosive[J]. Explosion And Shock Waves, 2025, 45(4): 041403. doi: 10.11883/bzycj-2024-0132
Citation: GUO Zhiyun, LU Qiang, DING Yang, ZHANG LiangYong, LI Jin. Detonation performance and specific impulse characteristics of a PETN-based ultra-thin sheet explosive[J]. Explosion And Shock Waves, 2025, 45(4): 041403. doi: 10.11883/bzycj-2024-0132

一种PETN基超薄片炸药的爆轰性能及比冲量特性

doi: 10.11883/bzycj-2024-0132
基金项目: 国家自然科学基金(12072290)
详细信息
    作者简介:

    郭志昀(1985- ),男,硕士,助理研究员,guozhiyun@nint.ac.cn

    通讯作者:

    卢 强(1984- ),男,博士,副研究员,luqiang@nint.ac.cn

  • 中图分类号: O381

Detonation performance and specific impulse characteristics of a PETN-based ultra-thin sheet explosive

  • 摘要: 薄片炸药加载技术是实验室考核X射线辐照下空间结构动态响应的重要手段。为实现新型空间飞行器结构考核所需的超低比冲量化爆加载载荷,研制了以PETN为主炸药、高聚物橡胶为黏结剂的超薄片炸药。薄片炸药中PETN的质量分数为90%~92%,厚度范围为0.15~0.50 mm,密度范围为1.63~1.68 g/cm3,爆速范围为7.44~7.71 km/s。基于炸痕法的爆轰性能实验结果表明:厚度为0.15~0.50 mm的薄片炸药可由装药线密度为0.2 g/m的柔爆索可靠引爆,厚度为0.20~0.50 mm的炸药条均能可靠传爆。利用冲击摆测量装置对不同直径、不同厚度薄片炸药的比冲量特性进行了测试,结合理论分析,得出薄片炸药的比冲量与厚度成正比,比例系数为3 418.56 Pa·s/mm,成功实现了厚度为0.20 mm、比冲量约为680 Pa·s超薄片炸药的研制。
  • 图  1  薄片炸药

    Figure  1.  Sheet explosives

    图  2  薄片炸药起爆性能第1次实验

    Figure  2.  The first experiment on the initiation performance of sheet explosive

    图  3  薄片炸药起爆性能第2次实验

    Figure  3.  The second experiment on the initiation performance of sheet explosive

    图  4  薄片炸药起爆性能第3次实验

    Figure  4.  The third experiment on the initiation performance of sheet explosive

    图  5  薄片炸药传爆性能第1次实验

    Figure  5.  The first experiment on the detonation propagation performance of sheet explosive

    图  6  薄片炸药传爆性能第2次实验

    Figure  6.  The second experiment on the detonation propagation performance of sheet explosive

    图  7  薄片炸药冲量测量装置[22]

    Figure  7.  Impulse measurement apparatus for sheet explosive[22]

    图  8  柔爆索、连接基座及薄片炸药装配示意图[22]

    Figure  8.  Assembly diagram of mild detonating fuse, connecting base and sheet explosive[22]

    图  9  薄片炸药比冲量拟合结果

    Figure  9.  Fitting results of specific impulse of sheet explosive

    图  10  薄片炸药比冲量随厚度的变化关系

    Figure  10.  Relationship between the specific impulse and thickness of the sheet explosive

    表  1  超薄片炸药密度测量数据

    Table  1.   Measurement data of sheet explosive density

    PETN质量
    分数/%
    炸药厚度/
    mm
    超薄片炸药密度/(g·cm−3)
    测量值1 测量值2 测量值3 平均值
    900.201.671.651.661.66
    0.301.651.641.641.64
    0.401.631.641.631.63
    920.201.681.691.671.68
    0.301.661.661.651.66
    0.401.641.641.631.64
    下载: 导出CSV

    表  2  超薄片炸药爆速测量数据

    Table  2.   Measurement data of detonation velocity of sheet explosive

    PETN质量
    分数/%
    炸药厚度/
    mm
    爆速/(km·s−1)
    测量值1 测量值2 测量值3 平均值
    900.207.637.617.657.63
    0.307.557.537.547.54
    0.407.417.437.477.44
    920.207.697.687.757.71
    0.307.657.637.687.65
    0.407.537.527.547.53
    下载: 导出CSV

    表  3  薄片炸药比冲量直接测量数据

    Table  3.   Measurement data of the direct specific impulse of sheet explosive

    实验 炸药厚度/mm 炸药直径/mm 比冲量/(Pa·s)
    测试值 平均值
    1 0.20 8 923.4 917.4
    2 0.20 8 911.3
    3 0.20 10 762.0 762.0
    4 0.20 10 762.0
    5 0.20 15 642.2 639.6
    6 0.20 15 637.0
    7 0.30 8 1 279.9 1 285.9
    8 0.30 8 1 291.8
    9 0.30 10 1 138.6 1 134.3
    10 0.30 10 1 129.9
    11 0.30 15 1 024.6 1 008.7
    12 0.30 15 992.8
    13 0.36 10 1 434.2 1 434.2
    14 0.36 15 1 280.3 1 280.3
    15 0.40 8 1 639.3 1 652.3
    16 0.40 8 1 665.2
    17 0.40 10 1 527.9 1 527.9
    18 0.40 10 1 527.9
    19 0.40 15 1 425.5 1 419.3
    20 0.40 15 1 413.1
    21 0.50 8 2 027.7 2 027.7
    22 0.50 8 2 027.7
    23 0.50 10 1 937.5 1 910.5
    24 0.50 10 1 883.4
    25 0.50 15 1 788.9 1 792.0
    26 0.50 15 1 795.0
    下载: 导出CSV

    表  4  比冲量测试数据与数值模拟结果的对比

    Table  4.   Comparison between the test data and numerical simulation results of specific impulse

    炸药厚度/mm 比冲量/(Pa·s) 相对偏差/%
    测试值 模拟值
    0.20 685.1 700.2 2.2
    0.30 1 019.4 1 059.6 3.8
    0.50 1 684.5 1 770.4 4.9
    下载: 导出CSV
  • [1] 周南, 乔登江. 脉冲束辐照材料动力学 [M]. 北京: 国防工业出版社, 2002: 9–12.

    ZHOU N, QIAO D J. Materials dynamics under pulse beam radiation [M]. Beijing: National Defense Industry Press, 2002: 9–12.
    [2] LONGLEY R W. Analytical relationships for estimating the effects of X-rays on materials: AFRPL-TR-74-52 [R]. USA: AFRPL, 1974.
    [3] 毛勇建, 邓宏见, 何荣建. 强脉冲软X光喷射冲量的几种模拟加载技术 [J]. 强度与环境, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008.

    MAO Y J, DENG H J, HE R J. Several simulation techniques of blow-off impulses by intense pulsed cold X-rays [J]. Structure & Environment Engineering, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008.
    [4] LINDBERG H E, MURRAY Y. Calibration and analysis of the SPLAT (spray lead at target) impulse simulation technique: DNA-TR-81-333 [R]. USA: APTEK. Inc., 1983.
    [5] LINDBERG H E. Deformation ripple from the SPLAT impulse simulation technique: AD-A190-861 [R]. USA: APTEK. Inc., 1988.
    [6] 赵国民, 张若棋, 彭常贤, 等. 铅壳柔爆索冲量作用下圆柱壳体结构响应实验研究 [J]. 爆炸与冲击, 2002, 22(2): 126–131. DOI: 10.11883/1001-1455(2002)02-0126-6.

    ZHAO G M, ZHANG R Q, PENG C X, et al. Experimental studies of the structural response of cylindrical shells under mild detonating fuse impulse [J]. Explosion and Shock Waves, 2002, 22(2): 126–131. DOI: 10.11883/1001-1455(2002)02-0126-6.
    [7] FORRESTAL M J, ALZHEIMER W E. Response of a circular elastic shell to moving and simultaneous loads [J]. AIAA Journal, 1970, 8(5): 970–971. DOI: 10.2514/3.5810.
    [8] LINDBERG H E, COLTON J D. Sheet explosive simulation for combined shock and structural response: AFWL-TR-69-124 [R]. USA: AFWL, 1970.
    [9] FRANKLIN B W. Development of a high-energy flexible sheet explosive: AD-786510 [R]. USA: Picatinny Arsenal, 1974.
    [10] 毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅰ): 流固耦合模拟 [J]. 高压物理学报, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006.

    MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅰ): fluid-structure interaction simulation [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006.
    [11] 毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅱ): 解耦分析与实验验证 [J]. 高压物理学报, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011.

    MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅱ): decoupling analysis and experimental validation [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011.
    [12] 毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅲ): 对X射线力学效应的模拟等效性分析 [J]. 高压物理学报, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009.

    MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of loading cylindrical shell by explosive rods (Ⅲ): fidelity for simulating X-ray mechanical effects [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009.
    [13] 丁洋, 卢强, 李进, 等. 用十字形超细药条离散群同步起爆实现超低比冲量加载 [J]. 爆炸与冲击, 2023, 43(5): 054101. DOI: 10.11883/bzycj-2022-0314.

    DING Y, LU Q, LI J, et al. Realization of ultra-low specific impulse loading by synchronous initiation of discrete group of cross ultra-fine explosive rods [J]. Explosion and Shock Waves, 2023, 43(5): 054101. DOI: 10.11883/bzycj-2022-0314.
    [14] BENHAM R A. Preliminary experiments using light-initiated high explosive for driving thin flyer plates: SAND79-1847/XAB [R]. USA: Sandia National Laboratories, 1979.
    [15] RIVERA W G, BENHAM R A, DUGGINS B D, et al. Explosive technique for impulse loading of space structures: SAND99-3175C [R]. USA: Sandia National Laboratories, 1999.
    [16] 徐海斌, 杨军, 仵可, 等. 光辐射起爆乙炔银-硝酸银光敏炸药同步性能 [J]. 兵工学报, 2022, 43(11): 2791–2797. DOI: 10.12382/bgxb.2021.0611.

    XU H B, YANG J, WU K, et al. Simultaneous initiation of light-initiated explosive silver acetylide-silver nitrate [J]. Acta Armamentarii, 2022, 43(11): 2791–2797. DOI: 10.12382/bgxb.2021.0611.
    [17] 随亚光, 陈博, 徐海斌, 等. 光敏炸药加载实验中的电磁干扰防护技术 [J]. 现代应用物理, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203.

    SUI Y G, CHEN B, XU H B, et al. Electromagnetic interference protection technology in loading experiment of light-initiated explosive [J]. Modern Applied Physics, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203.
    [18] 刘瑶, 王建华, 刘玉存, 等. 薄片橡胶炸药的制备及性能研究 [J]. 爆破器材, 2014(2): 24–28. DOI: 10.3969/j.issn.1001-8352.2014.02.006.

    LIU Y, WANG J H, LIU Y C, et al. Preparation and performance study of thin rubber explosive [J]. Explosive Materials, 2014(2): 24–28. DOI: 10.3969/j.issn.1001-8352.2014.02.006.
    [19] 黄亨建, 张明, 韩超, 等. 一种低比冲量片状挠性炸药 [M]. 中国工程物理研究院科技年报. 北京: 原子能出版社, 2003: 363.
    [20] 林鹏, 王长利, 王等旺. 挠性炸药比冲量的数值模拟与实验研究 [J]. 火炸药学报, 2011, 34(4): 30–33, 48. DOI: 10.14077/j.issn.1007-7812.2011.04.002.

    LIN P, WANG C L, WANG D W. Numerical simulation and experimental studies on impulse of flexible explosive [J]. Chinese Journal of Explosives & Propellants, 2011, 34(4): 30–33, 48. DOI: 10.14077/j.issn.1007-7812.2011.04.002.
    [21] 岳晓红, 毛勇建, 何荣建, 等. 片状炸药的比冲量标定技术 [C]//2002全国火炸药技术及钝感弹药学术研讨会论文集. 绵阳: 中国工程物理研究院化工材料研究所, 2002: 396–398.
    [22] 卢强, 王占江, 刘晓新, 等. 薄片炸药与固体靶冲量耦合的计算模型 [J]. 爆炸与冲击, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08.

    LU Q, WANG Z J, LIU X X, et al. A computational model for impulse coupling between sheet explosive and target [J]. Explosion and Shock Waves, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08.
    [23] 张宝平, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2009: 185–187.
    [24] 门朝举, 王占江, 郭志昀, 等. 基于冲击摆的片炸药比冲量测量技术 [C]//第七届全国爆炸力学实验技术学会会议论文集. 宁波: 中国力学学会爆炸力学专业委员会, 2012: 4.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  42
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 修回日期:  2024-09-23
  • 网络出版日期:  2024-09-23
  • 刊出日期:  2025-04-11

目录

    /

    返回文章
    返回