突触后支架蛋白Preso在颅脑冲击伤诱导创伤后应激障碍中的作用机制

曹紫萱 张卓媛 刘丹 李田晶 廖丹 张敏 葛俊苗 罗鹏 李新

曹紫萱, 张卓媛, 刘丹, 李田晶, 廖丹, 张敏, 葛俊苗, 罗鹏, 李新. 突触后支架蛋白Preso在颅脑冲击伤诱导创伤后应激障碍中的作用机制[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0216
引用本文: 曹紫萱, 张卓媛, 刘丹, 李田晶, 廖丹, 张敏, 葛俊苗, 罗鹏, 李新. 突触后支架蛋白Preso在颅脑冲击伤诱导创伤后应激障碍中的作用机制[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0216
CAO Zixuan, ZHANG Zhuoyuan, LIU Dan, LI Tianjing, LIAO Dan, ZHANG Min, GE Junmiao, LUO Peng, LI Xin. Role mechanism of the postsynaptic scaffold protein Preso in the induction of post-traumatic stress disorder by blast traumatic brain injury[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0216
Citation: CAO Zixuan, ZHANG Zhuoyuan, LIU Dan, LI Tianjing, LIAO Dan, ZHANG Min, GE Junmiao, LUO Peng, LI Xin. Role mechanism of the postsynaptic scaffold protein Preso in the induction of post-traumatic stress disorder by blast traumatic brain injury[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0216

突触后支架蛋白Preso在颅脑冲击伤诱导创伤后应激障碍中的作用机制

doi: 10.11883/bzycj-2024-0216
基金项目: 国防基础加强重点项目(2020-JCJQ-ZD-254-04);国家自然科学基金(82171321)
详细信息
    作者简介:

    曹紫萱(2001- ),女,博士研究生,zixuancao2022@163.com

    通讯作者:

    李 新(1984- ),女,博士,副教授,li_xin_mail@126.com

  • 中图分类号: O383

Role mechanism of the postsynaptic scaffold protein Preso in the induction of post-traumatic stress disorder by blast traumatic brain injury

  • 摘要: 将36只雄性C57小鼠随机分为对照组(Sham组)、3.5 MPa bTBI组、4.5 MPa bTBI组、5.5 MPa bTBI组、4.5 MPa bTBI+生理盐水组(bTBI+SA组)、4.5 MPa bTBI+小分子多肽组(bTBI+TAT-FERM组),每组6只;将12只 Preso -/-小鼠随机分为Sham组和 4.5 MPa bTBI组,每组6只。对小鼠进行bTBI造模,完成后常规饲养2周,4.5 MPa bTBI+生理盐水组和4.5 MPa bTBI+TAT-FERM组在bTBI造模后每天通过尾静脉给药1次,连续给药5天。与对照组相比,3.5 MPa bTBI组小鼠焦虑抑郁行为改变不显著;4.5 MPa bTBI和5.5 MPa bTBI组小鼠出现PTSD样症状。与对照组相比,4.5 MPa bTBI组Preso/mGluR1复合体形成增加,使用TAT-FERM可阻断Preso与mGluR1的相互作用,可在不改变Preso/mGluR1复合体组成分子蛋白表达的情况下抑制Preso/mGluR1复合体形成,并且改善bTBI所导致的PTSD症状。bTBI促进Preso/mGluR1复合体形成是bTBI诱致PTSD症状的重要分子病理机制,通过阻断Preso与mGluR1相互作用可减轻bTBI对PTSD的影响,进而为治疗bTBI相关的PTSD提供了潜在靶点。
  • 图  1  3组不同驱动压力爆炸冲击波实际加载的波形曲线

    Figure  1.  Three types of waveform curves for actual loading of blast shock wave with different driving pressures

    图  2  4组小鼠脑组织HE染色结果比较

    Figure  2.  Comparison of HE staining results in brain tissue of four groups of mice

    图  3  Preso/mGluR1复合体在bTBI后的表达变化

    Figure  3.  Alteration of Preso/mGluR1 complex after bTBI

    图  4  TAT-FERM对Preso/mGluR1复合体在bTBI后的表达影响

    Figure  4.  Effects of TAT-FERM on Preso/mGluR1 complex after bTBI

    表  1  4组小鼠旷场实验结果对比

    Table  1.   Comparison of results of four groups of mice in open-field experiment

    分组 进入中心区域次数 中心区域运动距离百分比/%
    Sham 5.83±0.65 15.12±1.74
    3.5 MPa bTBI 5.67±0.52 14.75±1.55
    4.5 MPa bTBI 4.33±0.44 10.43±1.16
    5.5 MPa bTBI 3.50±0.55 7.47±0.37
    下载: 导出CSV

    表  2  4组小鼠高架十字迷宫实验结果比较

    Table  2.   Comparison of results of elevated cross maze experiments in four groups of mice

    分组 $ {\mathrm{\gamma }}_{{n}_{\mathrm{o}\mathrm{e}}} $/% $ {\mathrm{\gamma }}_{{n}_{\mathrm{o}\mathrm{t}}} $/%
    Sham 14.02±1.32 12.15±1.55
    3.5 MPa bTBI 10.57±0.83 10.03±0.54
    4.5 MPa bTBI 9.41±0.96 8.11±0.88
    5.5 MPa bTBI 5.38±0.75 4.95±1.28
    下载: 导出CSV

    表  3  2组Preso-/-小鼠旷场实验结果对比

    Table  3.   Comparison of results of two groups of Preso-/- mice in open-field experiment

    分组 进入中心区域次数 中心区域运动距离百分比/%
    Sham 6.33±0.65 14.81±0.84
    bTBI 5.33±0.52 13.94±1.35
    下载: 导出CSV

    表  4  2组Preso-/-小鼠高架十字迷宫实验结果比较

    Table  4.   Comparison of results of elevated cross maze experiments in two groups of Preso-/- mice

    分组 $ {\mathrm{\gamma }}_{{n}_{\mathrm{o}\mathrm{e}}} $/% $ {\mathrm{\gamma }}_{{n}_{\mathrm{o}\mathrm{t}}} $/%
    Sham 13.34±0.98 11.15±1.43
    bTBI 12.55±1.28 10.03±1.24
    下载: 导出CSV

    表  5  2组bTBI小鼠旷场实验结果对比

    Table  5.   Comparison of results of two groups of bTBI mice in open-field experiment

    给药分组 进入中心区域次数 中心区域运动距离百分比/%
    SA 3.67±0.75 8.08±0.86
    TAT-FERM 4.50±0.89 12.44±0.45
    下载: 导出CSV

    表  6  2组bTBI小鼠高架十字迷宫实验结果比较

    Table  6.   Comparison of results of elevated cross maze experiments in two groups of bTBI mice

    分组 $ {\mathrm{\gamma }}_{{n}_{\mathrm{o}\mathrm{e}}} $/% $ {\mathrm{\gamma }}_{{n}_{\mathrm{o}\mathrm{t}}} $/%
    SA 5.21±0.76 5.18±0.45
    TAT-FERM 9.79±1.15 9.32±0.59
    下载: 导出CSV
  • [1] LINDBERG M A, MOY MARTIN E M, MARION D W. Military traumatic brain injury: the history, impact, and future [J]. Journal of Neurotrauma, 2022, 39(17/18): 1133–1145. DOI: 10.1089/neu.2022.0103.
    [2] TROYANSKAYA M, PASTOREK N J, SCHEIBEL R S, et al. Combat exposure, PTSD symptoms, and cognition following blast-related traumatic brain injury in OEF/OIF/OND service members and veterans [J]. Military Medicine, 2015, 180(3): 285–289. DOI: 10.7205/MILMED-D-14-00256.
    [3] KAPLAN G B, LEITE-MORRIS K A, WANG L, et al. Pathophysiological bases of comorbidity: traumatic brain injury and post-traumatic stress disorder [J]. Journal of Neurotrauma, 2018, 35(2): 210–225. DOI: 10.1089/neu.2016.4953.
    [4] JAMJOOM A A B, RHODES J, ANDREWS P J D, et al. The synapse in traumatic brain injury [J]. Brain, 2021, 144(1): 18–31. DOI: 10.1093/brain/awaa321.
    [5] HU J H, YANG L L, KAMMERMEIER P J, et al. Preso1 dynamically regulates group I metabotropic glutamate receptors [J]. Nature Neuroscience, 2012, 15(6): 836–844. DOI: 10.1038/nn.3103.
    [6] ZHANG Z Y, GAO X Y, TIAN Z C, et al. Preso enhances mGluR1-mediated excitotoxicity by modulating the phosphorylation of mGluR1-Homer1 complex and facilitating an ER stress after traumatic brain injury [J]. Cell Death Discovery, 2024, 10(1): 153. DOI: 10.1038/s41420-024-01916-5.
    [7] RACE N S, ANDREWS K D, LUNGWITZ E A, et al. Psychosocial impairment following mild blast-induced traumatic brain injury in rats [J]. Behavioural Brain Research, 2021, 412: 113405. DOI: 10.1016/j.bbr.2021.113405.
    [8] KIM S Y, YEH P H, OLLINGER J M, et al. Military-related mild traumatic brain injury: clinical characteristics, advanced neuroimaging, and molecular mechanisms [J]. Translational Psychiatry, 2023, 13(1): 289. DOI: 10.1038/s41398-023-02569-1.
    [9] LAI C, KOSTAS-POLSTON E A, ENGLER M B, et al. Prevalence of PTSD in active duty members with mild traumatic brain injury: systematic review and meta-analysis [J]. Military Medicine, 2024, 189(7/8): e1454–e1461. DOI: 10.1093/milmed/usae272.
    [10] CHEN T, ZHU J, WANG Y H, et al. Arc silence aggravates traumatic neuronal injury via mGluR1-mediated ER stress and necroptosis [J]. Cell Death & Disease, 2020, 11(1): 4. DOI: 10.1038/s41419-019-2198-5.
    [11] HENTER I D, PARK L T, ZARATE C A JR. Novel glutamatergic modulators for the treatment of mood disorders: current status [J]. CNS Drugs, 2021, 35(5): 527–543. DOI: 10.1007/s40263-021-00816-x.
    [12] BARACALDO-SANTAMARÍA D, ARIZA-SALAMANCA D F, CORRALES-HERNÁNDEZ M G, et al. Revisiting excitotoxicity in traumatic brain injury: from bench to bedside [J]. Pharmaceutics, 2022, 14(1): 152. DOI: 10.3390/pharmaceutics14010152.
    [13] LEE H W, CHOI J, SHIN H, et al. Preso, a novel PSD-95-interacting FERM and PDZ domain protein that regulates dendritic spine morphogenesis [J]. Journal of Neuroscience, 2008, 28(53): 14546–14556. DOI: 10.1523/JNEUROSCI.3112-08.2008.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  9
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2025-05-12
  • 网络出版日期:  2024-10-24

目录

    /

    返回文章
    返回