考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型

教继轩 白志玲 段卓平 张连生 黄风雷

教继轩, 白志玲, 段卓平, 张连生, 黄风雷. 考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0224
引用本文: 教继轩, 白志玲, 段卓平, 张连生, 黄风雷. 考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0224
JIAO Jixuan, BAI Zhiling, DUAN Zhuoping, ZHANG Liansheng, HUANG Fenglei. A buring-crack network theoretical model for reaction evolution of explosives considering the inertial confinement effect of the shell motion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0224
Citation: JIAO Jixuan, BAI Zhiling, DUAN Zhuoping, ZHANG Liansheng, HUANG Fenglei. A buring-crack network theoretical model for reaction evolution of explosives considering the inertial confinement effect of the shell motion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0224

考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型

doi: 10.11883/bzycj-2024-0224
基金项目: 国家自然科学基金(12002044)
详细信息
    作者简介:

    教继轩(1992- ),男,博士研究生,3220205028@bit.edu.cn

    通讯作者:

    段卓平(1965- ),男,博士,研究员,duanzp@bit.edu.cn

  • 中图分类号: O389; TJ55

A buring-crack network theoretical model for reaction evolution of explosives considering the inertial confinement effect of the shell motion

  • 摘要: 为合理描述机械约束下炸药装药点火后的反应演化行为,深入分析壳体变形运动特征,将壳体响应变化过程分为弹塑性准静态阶段、完全屈服运动阶段和壳体破裂后惯性运动约束阶段。考虑装药燃烧裂纹网络反应演化与壳体变形运动的耦合作用,建立了反映壳体运动惯性约束效应的装药反应演化模型,通过与典型实验结果进行对比,验证了模型及参数的适应性。壳体运动速度与内部压力的变化本质表征了装药能量释放与产物气体对外做功关系,考虑壳体运动惯性约束效应可以更全面地表征装药反应演化过程,利用该模型,可以根据壳体壁面运动速度历史计算得到弹内压力、反应速率、反应度变化历史,为约束装药在意外刺激下的安全性设计与评估提供理论支撑。
  • 图  1  约束装药燃烧裂纹扩展示意图

    Figure  1.  Schematic diagram of burning-crack propagation of confined explosives

    图  2  端盖受均布压力和剪切力作用

    Figure  2.  End cover is subjected to uniform pressure and shear force

    图  3  圆筒侧壁简化受力分析

    Figure  3.  Simplified stress analysis of thick-walled cylinder

    图  4  壳体破坏状态流程图

    Figure  4.  Flow chart of the destruction state of the shell

    图  5  约束装药圆筒壁运动示意图

    Figure  5.  Schematic diagram of cylinder wall expansion motion of confined explosives

    图  6  裂缝产物气体泄漏示意图(炸药应有燃烧裂纹)

    Figure  6.  Schematic diagram of leakage from product gas cracks

    图  7  约束装药反应演化实验测试系统及装置

    Figure  7.  Experimental testing system and device for charge reaction evolution

    图  8  (约束体厚度1 mm)装药反应演化过程压力和壳体运动速度变化历史的计算与实验结果对比

    Figure  8.  Comparison between the calculating results and experimental data of the pressure profiles and wall velocity of the steel case with 1 mm wall thickness

    图  9  (约束体厚度3mm)装药反应演化过程压力和壳体运动速度变化历史的计算与实验结果对比

    Figure  9.  Comparison between the calculating results and experimental data of the pressure profiles and wall velocity of the steel case with 3 mm wall thickness

    图  10  (约束体厚度3和1 mm)约束装药反应度增长过程

    Figure  10.  Reaction growth of explosives under confinement with 3 and 1 mm wall thickness

    图  11  (约束体厚度1 mm)惯性约束效应对装药反应演化过程压力和壳体运动速度变化历史的影响

    Figure  11.  Influence of the inertial effect on the calculated histories of the pressure profiles and wall velocity of the steel case with 1 mm wall thickness

    图  12  (约束体厚度3 mm)惯性约束效应对装药反应演化过程压力和壳体运动速度变化历史的影响

    Figure  12.  Influence of the inertial effect on the calculated histories of the pressure profiles and wall velocity of the steel case with 3 mm wall thickness

    图  13  装药尺寸对炸药装药点火后反应增长过程的影响

    Figure  13.  Influence of explosive size on the reaction growth after explosive charge ignition.

    图  14  壳体厚度对炸药装药点火后反应增长过程的影响

    Figure  14.  Influence of shell thickness on the reaction growth after explosive charge ignition

    表  1  计算所需8701炸药的热力学参数及壳体参数

    Table  1.   Thermodynamic parameters of PBX8701 and physical parameters of wall

    ρe0/(g·cm−3) B/GPa α/(g·cm−2·s−1·MPa-β) β Rp/(cm3·MPa·mol−1·K−1) Tp/K Mg/(g·mol−1)
    1.65 5.0[20] 1.16[21] 0.87[21] 8.314 472[22] 4 000.0[23] 22.21
    pi/MPa Smax/cm2 Si/cm2 pr/MPa Hr/cm Ri/cm Ro/cm
    1.6 239.0 159.0 1 822.0 2.0 2.575 4.575
    K E/GPa μ σs/MPa γ
    1.78 200.0[10] 0.3[10] 235.0[24] 1.4[25]
    下载: 导出CSV

    表  2  约束体1和3 mm实验与理论模型壳体膨胀速度的对比

    Table  2.   Comparison between the experimental data and calculating results of wall velocity of the steel case with 1 and 3 mm wall thickness

    约束体厚度/mm壳体膨胀速度/(m·s−1)误差/%精度提高/%
    实验峰值模型峰值无惯性
    1202.5/177.1197.891.64.047.52
    3243.6234.2140.13.938.63
    下载: 导出CSV
  • [1] DICKSON P M, ASAY B W, HENSOPM B F, et al. Thermal cook-off response of confined PBX 9501 [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460(2052): 3447–3455. DOI: 10.1098/rspa.2004.1348.
    [2] PARKER G R, PETERSON P D, ASAY B, et al. Examination of morphological changes that affect gas permeation through thermally damaged explosives [J]. Propellants Explosives Pyrotechnics, 2010, 29(5): 274–281. DOI: 10.1002/prep.200400057.
    [3] HOLMES M D, PARKER G R, HEATWOLE E M, et al. Center-ignited spherical-mass explosion (CISME), FY 2018 Report: LA-UR-18-29651 [R]. USA: Los Alamos National Laboratory, 2018.
    [4] HOLMES M D, PARKER G R, BROILO R M, et al. Fracture effects on explosive response (FEER), FY2018 Report: LA-UR-18-29694 [R]. USA: Los Alamos National Laboratory, 2018.
    [5] WANG S, LIANG W, LU F Y, et al. Simulation of convective combustion reactions in PBX based on DEM-CPM [J]. AIP Advances, 2021, 11(8): 085326. DOI: 10.1063/5.0062549.
    [6] 姚奎光, 王淑娟, 樊星, 等. 不同机械约束下压装PBX炸药反应演化行为 [J]. 兵工学报, 2022, 43(8): 1772–1778. DOI: 10.12382/bgxb.2021.0445.

    YAO K G, WANG S J, FAN X, et al. Reaction evolution behaviors of pressed plastic-bonded explosive (PBX) under different mechanical confinement conditions [J]. Acta Armamentarii, 2022, 43(8): 1772–1778. DOI: 10.12382/bgxb.2021.0445.
    [7] TRINGE J W, MOLITORIS J D, SMILOWITZ L, et al. Time-sequenced X-ray observation of a thermal explosion [J]. American Institute of Physics, 2009, 1195: 424–427. DOI: 10.1063/1.3295164.
    [8] SMILOWITZ L. The evolution of solid density within a thermal explosion II. dynamic proton radiography of cracking and solid consumption by burning [J]. Journal of Applied Physics, 2012, 111(10): 617–1214. DOI: 10.1063/1.4711072.
    [9] HILL L G. Burning crack networks and combustion bootstrapping in cookoff explosions [C]//Conference of the American Physical-Society Topical Group on Shock Compression of Condensed Matter. Baltimore, MD: American Institute of Physics, 2006. DOI: 10.1063/1.2263377.
    [10] 段卓平, 白志玲, 白孟璟, 等. 强约束固体炸药燃烧裂纹网络反应演化模型 [J]. 兵工学报, 2021, 42(11): 2291–2299. DOI: 10.3969/j.issn.1000-1093.2021.11.001.

    DUAN Z P, BAI Z L, BAI M J, et al. Burning-crack networks model for combustion reaction growth of solid explosives with strong confinement [J]. Acta Armamentarii, 2021, 42(11): 2291–2299. DOI: 10.3969/j.issn.1000-1093.2021.11.001.
    [11] DUAN Z, BAI M J, BAI Z L, et al. Combustion crack-network reaction evolution model for highly-confined explosives [J]. Defence Technology, 2023, 26: 54–67. DOI: 10.1016/j.dt.2022.06.011.
    [12] 白志玲, 段卓平, 李治, 等. 热刺激约束DNAN基不敏感熔铸炸药装药点火后反应演化调控模型 [J]. 含能材料, 2023, 31(10): 1004–1012. DOI: 10.11943/CJEM2023160.

    BAI Z L, DUAN Z P, LI Z, et al. Regulation model for reaction evolution of confined DNAN-based cast explosives after ignition under thermal stimulation [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1004–1012. DOI: 10.11943/CJEM2023160.
    [13] 胡海波, 傅华, 李涛, 等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展 [J]. 爆炸与冲击, 2020, 40(1): 011401. DOI: 10.11883/bzycj-2019-0346.

    HU H B, FU H, LI T, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011401. DOI: 10.11883/bzycj-2019-0346.
    [14] 李涛, 胡海波, 尚海林, 等. 强约束球形装药反应裂纹传播和反应烈度表征实验 [J]. 爆炸与冲击, 2020, 40(1): 011402. DOI: 10.11883/bzycj-2019-0348.

    LI T, HU H B, SHANG H L, et al. Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011402. DOI: 10.11883/bzycj-2019-0348.
    [15] BERGHOUT H L, SON S F, ASAY B W, et al. Convective burning in gaps of PBX 9501 [J]. Proceedings of the Combustion Institute, 2000, 28(1): 911–917. DOI: 10.1016/S0082-0784(00)80297-0.
    [16] ASAY B W. Shock wave science and technology reference library, vol. 5: non-shock initiation of explosives [M]. Heidelberg, Baden-Württemberg, Germany: Springer, 2010: 245–401.
    [17] 陈明详. 弹塑性力学 [M]. 2版. 北京: 科学出版社, 2021: 297–302.
    [18] 奥尔连科. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011: 797–803.
    [19] 赵衡阳. 气体与粉尘爆炸原理 [M]. 北京: 北京理工大学出版社, 1996: 186–196.
    [20] ZHANG W Y, DENG X Y, CHEN S J, et al. Molecular dynamics simulation of thermal sensitivity, thermal expansion and mechanical properties of PBX9501 [J]. 2016, 39(3): 32–36. DOI: 10.14077/j.issn.1007-7812.2016.03.006.
    [21] 祝明水, 龙新平, 蒋小华, 等. 不同粒径RDX的燃烧特性研究 [J]. 含能材料, 2004, 12(1): 40–42. DOI: 10.3969/j.issn.1006-9941.2004.01.012.

    ZHU M S, LONG X P, JIANG X H, et al. Study on the combustion characteristics of RDX with different particle sizes [J]. Chinese Journal of Energetic Materials, 2004, 12(1): 40–42. DOI: 10.3969/j.issn.1006-9941.2004.01.012.
    [22] JACKSOPN S I, HILL L G. Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2307–2313. DOI: 10.1016/j.proci.2008.05.089.
    [23] GREBENKIN K. Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB) [J]. Combustion, Explosion, and Shock Waves, 2009, 45(1): 78–87. DOI: 10.1007/s10573-009-0011-y.
    [24] 范钦珊, 殷雅俊, 唐靖林, 等. 材料力学 [M]. 3版. 北京: 清华大学出版社, 2014: 42–49.
    [25] 张震宇, 田占东, 陈军, 等. 爆轰物理 [M]. 长沙: 国防科技大学出版社, 2016: 68–73.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  23
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-18
  • 修回日期:  2024-08-26
  • 网络出版日期:  2024-09-02

目录

    /

    返回文章
    返回